Skip to main content
Log in

De novo transcriptome analysis of stressed blood clam (Anadara broughtonii) and identification of genes associated with hemoglobin

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Blood clam (Anadara broughtonii) is a commercially important marine bivalve characterised by the red blood. Recently, the clams have been subjected to severe resource recession. Multiple environmental stressors are indispensable for the recession.

Objective

We aimed to investigate the transcriptome information of blood clam under environmental stressors.

Methods

Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Several public databases were introduced for gene annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathways analyses. The Open Reading Frame of annotated hemoglobin (Hb) was predicted and validated by DNAMAN 6.0 and NCBI BLASTx, respectively.

Results

A total of 242,919 transcripts were generated, 116,264 unigenes were subsequently assembled with an average length of 747 base pairs, and 33,776 unigenes were successfully annotated. Gene Ontology (GO) categories indicated that the terms of cellular processes, metabolic processes, cell, cell part, binding, and catalytic activity were dominant. KEGG pathway analyses suggested ribosome, oxytocin, focal adhesion, Ras, and PI3K-Akt were the largest signaling pathway groups, and many presented pathways (Ras, Rap1, and MAPK, etc.) were related to apoptosis, immune and stress response. In addition, a total of 19,306 potential simple sequence repeats (SSRs) were detected in 15,852 sequences. Six hemoglobin-related genes with complete conserved domain sequences were identified and 3 of them were predicted as HbI, HbIIα, and HbIIβ.

Conclusion

This study provides transcriptome responses to multiple environmental stressors in blood clams and would provide interesting hints for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas Alkarkhi FM, Ismail N, Easa AM (2008) Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques. J Harzard Mater 150:783–789

    Article  CAS  Google Scholar 

  • An MI, Choi CY (2010) Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: effects on hemolymph and biochemical parameters. Comp Biochem Physiol B Biochem Mol Biol 155:34–42

    Article  PubMed  CAS  Google Scholar 

  • Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. In: Bergman NH (ed) Comparative genomics. Humana Press, Clifton, pp 71–91

    Google Scholar 

  • Artigaud S, Thorne MA, Richard JL, Lavaud R, Jean F, Flye-Sainte-Marie J, Peck LS, Pichereau V, Clark MS (2014) Deep sequencing of the mantle transcriptome of the great scallop Pecten maximus. Mar Genomics 15:3–4

    Article  PubMed  Google Scholar 

  • Bao Y, Wang Q, Lin Z (2011) Hemoglobin of the bloody clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish Shellfish Immunol 31:517–523

    Article  CAS  PubMed  Google Scholar 

  • Bao YB, Wang Q, Guo XM, Lin ZH (2013) Structure and immune expression analysis of hemoglobin genes from the blood clam Tegillarca granosa. Genet Mol Res 12:3110–3123

    CAS  PubMed  Google Scholar 

  • Bettencourt R, Pinheiro M, Egas CO, Gomes P, Afonso M, Shank T, Santos RS (2010) High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus BMC Genomics 11:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burns G, Thorndyke MC, Peck LS, Clark MS (2013) Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae Mar Genomics 9:9–15

    Article  PubMed  Google Scholar 

  • Chen CC, Gong GC, Shiah FK (2007) Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar Environ Res 64:399–408

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zha J, Liang X, Bu J, Wang M, Wang Z (2013) Sequencing and de novo assembly of the Asian clam (Corbicula fluminea) transcriptome using the Illumina GAIIx method. PLoS One 8:e79516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong SC, Kang HW, Lee JM (1982) Experiments on the early artificial seedling production of ark shell Anadara broughtonii (SCHRENCK). Bull Fish Res Dev Agency Korea 28:185–197

    Google Scholar 

  • Chiancone E, Vecchini P, Verzili D, Ascoli F, Antonini E (1981) Dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis: structural and functional properties. J Mol Biol 152:577–592

    Article  CAS  PubMed  Google Scholar 

  • Chu PC, Fralick CR Jr, Haeger SD, Carron MJ (1997) A parametric model for the Yellow Sea thermal variability. J Geophys Res-Oceans 102:10499–10507

    Article  Google Scholar 

  • Clark MS, Thorne MA, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S (2011) Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 6:e15919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delroisse JM, Ortega-Martinez O, Dupont S, Mallefet JM, Flammang P (2015) De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Mar Genomics 23:109–121

    Article  PubMed  Google Scholar 

  • Djangham JS, Gabbott PA, Wood EJ (1978) Physico-chemical characteristics and oxygen-binding properties of the multiple haemoglobins of the West African blood clam Anadara senilis (L.). Comp Biochem Physiol B Comp Biochem 60:245–250

    Article  Google Scholar 

  • Djangmah JS, Davenport J, Shumway SE (1980) Oxygen consumption of the West African blood clam Anadara senilis. Mar Biol 56:213–217

    Article  Google Scholar 

  • Du H, Ba Z, Hou R, Wang S, Su H, Yan J, Tian M, Li Y, Wei W, Lu W et al (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 7:e33311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evseev GA, Lutaenko KA (1998) Bivalves of the subfamily Anadarinae (ArcIDae) from Vietnam. Malacol Rev 31:1–38

    Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    Article  CAS  PubMed  Google Scholar 

  • Franchini P, Van der Merwe M, Roodt-Wilding R (2011) Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis. BMC Res Notes 4:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta H, Kajita A (1983) Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry-US 22:917–922

    Article  CAS  Google Scholar 

  • Furuta H, Kajita A (1986) Structure and function of the dimeric and tetrameric hemoglobins from the bivalve mollusc, Anadara broughtonii. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 117–120

    Chapter  Google Scholar 

  • Furuta H, Kajita A (1991) Primary structure of the beta chain of the tetrameric hemoglobin from Anadara broughtonii. In: Vinogradov SN, Kapp OH (eds) Structure and function of invertebrate oxygen carriers. Springer, New York, pp 257–260

    Chapter  Google Scholar 

  • Furuta H, Ohe M, Kajita A (1977) Subunit structure of hemoglobins from erythrocytes of the blood clam, Anadara broughtonii. J Biochem 82:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Furuta H, Ohe M, Kajita A (1980) Ligand-dependent allosteric transformation of hemoglobins from the blood clam, Anadara broughtonii. BBA-Protein Struct 625:318–327

    Article  CAS  Google Scholar 

  • Furuta H, Ohe M, Kajita A (1981) Ligand-dependent polymerization of tetrameric hemoglobin from the blood clam Anadara broughtonii. BBA-Protein Struct 668:448–455

    Article  CAS  Google Scholar 

  • Gao X, Li P, Chen CTA (2013) Assessment of sediment quality in two important areas of mariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide and simultaneously extracted metal results. Mar Pollut Bull 72:281–288

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis BMC Genomics 10:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu L, Hao C, Fan R, Wu B, Tan L, Wu H (2015) De novo assembly and characterization of fruit transcriptome in black pepper (Piper nigrum). PLoS One 10:e0129822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Wu X, Jian D, Zhan Y, Fan G (2015) De novo transcriptome analysis of a medicinal fungi and identification of SSR markers. Biotechnol Biotechnol Equip 29:395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda-Saito M, Yonetani T, Chiancone E, Ascoli F, Verzili D, Antonini E (1983) Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inaequivalvis. J Mol Biol 170:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. ISMB 99:138–148

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Mashanov VS, Zueva OR, García-Arrarás JE (2014) Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics 15:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masseret E, Grzebyk D, Nagai S, Genovesi B, Lasserre B, Laabir M, Collos Y, Vaquer A, Berrebi P (2009) Unexpected genetic diversity among and within populations of the toxic dinoflagellate Alexandrium catenella as revealed by nuclear microsatellite markers. Appl Environ Microbiol 75:2037–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudalkar S, Golla R, Ghatty S, Reddy AR (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84:159–171

    Article  CAS  PubMed  Google Scholar 

  • Nassif NT, Glenn WK, Mackinlay AG (1994) The organization of the beta-globin gene of the bivalve mollusc Anadara trapezia and its evolutionary relationship to other invertebrate and vertebrate globin genes. J Mol Evol 39:47–55

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Ishimura T, Suzuki A, Sasaki T (2012) Seasonal changes in the shell microstructure of the bloody clam, Scapharca broughtonii (Mollusca: Bivalvia: Arcidae). Palaeogeogr Palaeoclimatol Palaeoecol 363:99–108

    Article  Google Scholar 

  • Ohnoki S, Mitomi Y, Ryuichiro H, Satake K (1973) Heterogeneity of hemoglobin from Arca (Anadara satowi) molecular weights and oxygen equilibria of Arca Hb I and II. J Biochem 73:717–725

    Article  CAS  Google Scholar 

  • Pauletto M, Milan M, Moreira R, Novoa B, Figueras A, Babbucci M, Patarnello T, Bargelloni L (2014) Deep transcriptome sequencing of Pecten maximus hemocytes: a genomic resource for bivalve immunology. Fish Shellfish Immunol 37:154–165

    Article  CAS  PubMed  Google Scholar 

  • Piro MC, Gambacurta A, Ascoli F (1996) Scapharca inaequivalvis tetrameric hemoglobin A and B chains: cDNA sequencing and genomic organization. J Mol Evol 43:594–601

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Huang Z, Chen J, Zou Q, You W, Ke C (2012) Sequencing and de novo analysis of Crassostrea angulata (Fujian oyster) from 8 different developing phases using 454 GSFlx. PLoS One 7:e43653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronda L, Bettati S, Henry ER, Kashav T, Sanders JM, Royer WE, Mozzarelli A (2013) Tertiary and quaternary allostery in tetrameric hemoglobin from Scapharca inaequivalvis. Biochemistry-US 52:2108–2117

    Article  CAS  Google Scholar 

  • Selin NI (2000) Shell form and growth of the bivalve Scapharca broughtoni. Russ J Mar Biol 26:204–208

    Article  Google Scholar 

  • Silina AV (2006) Spatial heterogeneity and long-term changes in bivalve Anadara broughtonii population: influence of river run-off and fishery. Ocean Sci J 41:211–219

    Article  Google Scholar 

  • Sugiura D, Katayama S, Sasa S, Sasaki K (2014) Age and growth of the ark shell Scapharca broughtonii (Bivalvia, Arcidae) in Japanese waters. J Shellfish Res 33:315–324

    Article  Google Scholar 

  • Suzuki T, Nakamura A, Satoh Y, Inai C, Furukohri T, Arita T (1992) Primary structure of chain I of the heterodimeric hemoglobin from the blood clam Barbatia virescens. J Protein Chem 11:629–633

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Qiu X, Wang J, Guo X, Yang A (1993) Resource enhancement of arkshell (Scapharca (Anadara) broughtonii) in Shandong offshore waters. Acta Genet Sin 5:396–402

    Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41

    Article  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    CAS  PubMed  Google Scholar 

  • Tian JT, Liu ZH, Zhou LQ, Wu B, Liu P, Yang AG (2012) Isolation and characterization of 48 polymorphic microsatellite markers for the blood clam Scapharca broughtonii (Arcidae). Genet Mol Res 11:4501–4507

    Article  PubMed  Google Scholar 

  • Verzili D, Citro G, Ascoli F, Chiancone E (1985) Immunological properties of the dimeric and tetrameric hemoglobins from the mollusc Scapharca inaequivalvis. FEBS Lett 181:347–352

    Article  CAS  Google Scholar 

  • Vuddhakul V, Soboon S, Sunghiran W, Kaewpiboon S, Chowdhury A, Ishibashi M, Nakaguchi Y, Nishibuchi M (2006) Distribution of virulent and pandemic strains of Vibrio parahaemolyticus in three molluscan shellfish species (Meretrix meretrix, Perna viridis, and Anadara granosa) and their association with foodborne disease in southern Thailand. J Food Prot 69:2615–2620

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang M, Teng W, Fu C, Wang C, Liu Z, Li S, Liu X (2014) Effects of microalgal diets on juvenile growth and survival of the ark shell, Scapharca broughtonii. Chin J Appl Ecol 25:2405–2410

    Google Scholar 

  • Wang Q, Xie X, Zhang M, Teng W, Liang M, Kong N, Wang C, Zhou Z (2017) Effects of temperature and salinity on survival and growth of juvenile ark shell Anadara broughtonii Fish Sci 83:619–624

    Article  CAS  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81:569–628

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, Basti M, Gambacurta A, Chiancone E, Ascoli F, LaMar GN (1996) Proton-NMR investigation of the heme cavity in the cyanomet derivative of the cooperative homodimeric hemoglobin from Scapharca inaequivalvis. BBA-Protein Struct Mol Biol 1298:261–275

    Article  CAS  Google Scholar 

  • Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D (2012) De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236:101–113

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Guo J, Jing N (2010) Culture status and research progress on genetic diversity of Scapharca broughtonii Hebei Fish 5:20

    Google Scholar 

  • Zhong M, Liu B, Wang X, Liu L, Lun Y, Li X, Ning A, Cao J, Huang M (2013) De novo characterization of Lentinula edodes C91-3 transcriptome by deep Solexa sequencing. Biochem Biophys Res Commun 431:111–115

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Yang A, Wang Q, Liu Z, Wu B, Tian J, Yang J, Lyv Z (2013) Studies on the hemocytes types and their immunological functions in bloody clam (Scapharca broughtonii). J Fish China 37:599–606

    Article  Google Scholar 

  • Zhou S, Chen L, Liu S, Wang X, Sun X (2015) De novo assembly and annotation of the Chinese chive (Allium tuberosum Rottler ex Spr.) transcriptome using the Illumina platform. PLoS One 10:e133312

    Google Scholar 

  • Zhou S, Zhang X, Li W, Li L, Cai X (2016) Experimental evaluation of fluorescent (alizarin red S and calcein) and clip-tag markers for stock assessment of ark shell, Anadara broughtonii Chin J Oceanol Limnogr 35:1–10

    Google Scholar 

  • Zhu Q, Li B, Mu S, Han B, Cui R, Xu M, You Z, Dong H (2013) TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco. BMC Genomics 14:806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staffs working in bivalve hatchery in Ling shanwei, Qingdao for providing experiment clams used in this study. This study was funded by the National Program on Key Basic Research Project (973 Program, 2015CB453302), and the Public Science and Technology Research Funds Projects of Ocean (201305043).

Author information

Authors and Affiliations

Authors

Contributions

ZX, and CM designed the study, WY prepared the manuscript, and reviewed it before submission. ZS and LT conducted the required experiments and performed data acquisition and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiumei Zhang.

Ethics declarations

Conflict of interest

Yihang Wang, Shanshan Zhou, Tianyu Liu, Muyan Chen, and Xiumei Zhang declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, S., Liu, T. et al. De novo transcriptome analysis of stressed blood clam (Anadara broughtonii) and identification of genes associated with hemoglobin. Genes Genom 42, 189–202 (2020). https://doi.org/10.1007/s13258-019-00887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00887-7

Keywords

Navigation