Skip to main content
Log in

Molecular characterization of a heat inducible rice gene, OsHSP1, and implications for rice thermotolerance

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Higher plants have acquired complex molecular mechanisms to withstand heat stress through years of natural evolutionary processes. Although physiological responses to elevated temperatures have been well studied, thermotolerance mechanisms at the molecular level are poorly understood in rice plants. In order to identify the genes involved in the thermotolerance of rice, we used a publicly available microarray dataset and identified a number of heat stress-responsive genes. Herein, we report details of the rice gene OsHSP1, which is upregulated by heat stress. In addition, OsHSP1 is highly expressed when exposed to salt and osmotic treatments but not cold treatment. Sequence analysis indicated that OsHSP1 belongs to the heat shock protein 90 family of genes. The biological function of OsHSP1 was investigated by heterologous overexpression in Arabidopsis. Transgenic Arabidopsis overexpressing the OsHSP1 gene exhibited enhanced thermotolerance but was hypersensitive under salt and osmotic stresses. Subcellular localization analysis indicated that the OsHSP1 protein is predominantly targeted to the cytosol and nucleus under heat stress. The coexpression network showed 39 interactions for the functionally interacting genes of OsHSP1. Taken together, these findings suggest that OsHSP1 is a heat-inducible gene that may play an important role in the thermotolerance of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altieri DC, Stein GS, Lian JB, Languino LR (2012) TRAP-1, the mitochondrial Hsp90. BBA-Mol Cell Res 1823:767–773

    CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Froehlich JE, Zhang H, Cheng C-L (2003) The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J 33:107–118

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998a) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ham D-J, Moon J-C, Hwang S-G, Jang CS (2013) Molecular characterization of two small heat shock protein genes in rice: their expression patterns, localizations, networks, and heterogeneous overexpressions. Mol Biol Rep. doi:10.1007/s11033-013-2786-x

    Google Scholar 

  • Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176:583–590

    Article  CAS  PubMed  Google Scholar 

  • Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imai T, Kato Y, Kajiwara C, Mizukami S, Ishige I, Ichiyanagi T, Hikida M, Wang J-Y, Udono H (2011) Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proc Natl Acad Sci USA 108:16363–16368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung CG, Lim SD, Hwang S-G, Jang CS (2012) Molecular characterization and concerted evolution of two genes encoding RING-C2 type proteins in rice. Gene 505:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperon 6:238–246

    Article  CAS  Google Scholar 

  • Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24:719–720

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkindale J, Michael M, Elizabeth V (2005) Plant responses to high temperature. In: Jenks MA, Hasegawa PM (eds) Plant Abiotic Stress. Blackwell Publishing, Oxford, pp 100–144

    Chapter  Google Scholar 

  • Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants. J Biol Chem 279:2101–2108

    Article  CAS  PubMed  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F (2004) Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomics 271:11–21

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day L, Baulcombe DC (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. BBA-Mol Cell Res 1823:774–787

    CAS  Google Scholar 

  • Mauch-mani B, Métraux J-p (1998) Salicylic Acid and Systemic Acquired Resistance to Pathogen Attack. Ann Bot 82:535–540

    Article  CAS  Google Scholar 

  • Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10:46–51

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proce Natl Acad Sci USA 101:9971–9975

    Article  CAS  Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyman M, Cronjé MJ (2008) Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot 59:2125–2132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiol 126:789–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100:11777–11782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2004) LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol 136:2831–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358:169–170

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin S-S, Niu Q-w, Chua N-H (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protoc 1:641–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries), Ministry for Food, Agriculture, Forestry and Fisheries and a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ009084), Rural Development Administration, Republic of Korea.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Seong Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, JC., Ham, D.J., Hwang, SG. et al. Molecular characterization of a heat inducible rice gene, OsHSP1, and implications for rice thermotolerance. Genes Genom 36, 151–161 (2014). https://doi.org/10.1007/s13258-013-0152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-013-0152-y

Keywords

Navigation