Skip to main content

Advertisement

Log in

Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon–proton mixed target

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon–proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon–proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suit H, Urie M (1992) Proton beams in radiation therapy. JNCI J Natl Cancer Inst 84:155–164

    Article  CAS  Google Scholar 

  2. Bortfeld T (1997) An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 24:2024–2033

    Article  CAS  PubMed  Google Scholar 

  3. Tajima T, Dawon JM (1979) Laser electron accelerator. Phys Rev Lett 43:267–270

    Article  CAS  Google Scholar 

  4. Bulanov SV, Khoroshkov VS (2002) A feasibility of using laser ion accelerators in proton therapy. Plasma Phys Rep 28:453–456

    Article  CAS  Google Scholar 

  5. Malka V, Fritzler S, Lefebvre E, d’Humières E, Ferrand R, Grillon G, Albaret C, Meyroneinc S, Chambaret JP, Antonetti A, Hulin D (2004) Practicability of protontherapy using compact laser systems. Med Phys 31(6):1587–1592

    Article  PubMed  Google Scholar 

  6. Fourkal E, Shahine B, Ding M, Li JS, Tajima T, Ma CM (2002) Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med Phys 29:2788–2798

    Article  CAS  PubMed  Google Scholar 

  7. Fourkal E, Li JS, Ding M, Tajima T, Ma CM (2003) Particle selection for laser-accelerated proton therapy feasibility study. Med Phys 30:1660–1670

    Article  CAS  PubMed  Google Scholar 

  8. Fourkal E, Li JS, Xiong W, Nahum A, Ma CM (2003) Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study. Phys Med Biol 48:3977

    Article  CAS  PubMed  Google Scholar 

  9. Luo W, Fourkal E, Li JS, Ma CM (2005) Particle selection and beam collimation system for laser-accelerated proton beam therapy. Med Phys 32:794–806

    Article  PubMed  Google Scholar 

  10. Fourkal E, Velchev I, Fan J, Luo W, Ma CM (2007) Energy optimization procedure for treatment planning with laser-accelerated protons. Med Phys 34:577–584

    Article  CAS  PubMed  Google Scholar 

  11. Schell S, Wikens JJ (2009) Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams. Phys Med Biol 54:N459

    Article  CAS  PubMed  Google Scholar 

  12. Pukhov A (2001) Three dimensional simulations of ion acceleration from a foil irradiated by a short pulse laser. Phys Rev Lett 86:3562–3565

    Article  CAS  PubMed  Google Scholar 

  13. Wilks SC, Kruer WL, Tabak M, Langdon AB (1992) Absorption of ultra-intense laser pulses. Phys Rev Lett 69:1383–1386

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs J et al (2006) Laser-driven proton scaling laws and new paths towards energy increase. Nat Phys 2:48–54

    Article  CAS  Google Scholar 

  15. Bahk S-W et al (2004) Generation and characterization of the highest laser intensities. Opt Lett 29:2837–2839

    Article  CAS  PubMed  Google Scholar 

  16. Zeil K, Kraft SD, Bock S, Bussmann M, Cowan TE, Kluge T, Metzkes J, Richter T, Sauerbrey R, Schramm U (2012) The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J Phys 12:045015

    Article  Google Scholar 

  17. Macchi A, Cattani F, Liseykina TV, Cornolti F (2005) Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys Rev Lett 94:165003

    Article  PubMed  Google Scholar 

  18. Robinson A, Zepf M, Kar S, Evans RG, Bellei C (2008) Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J Phys 10:013021

    Article  Google Scholar 

  19. Kar S et al (2012) Ion acceleration in multispecies targets driven by intense laser radiation pressure. Phys Rev Lett 109:185006

    Article  CAS  PubMed  Google Scholar 

  20. Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K-U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham KWD, Esirkepov T (2006) Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439:445–448

    Article  CAS  PubMed  Google Scholar 

  21. Margarone D, Klimo O, Kim IJ, Prokupek J, Limpouch J, Jeong TM, Mocek T, Psikal J, Kim HT, Proska J, Nam KH, Stolcova L, Choi IW, Lee SK, Sung JH, Yu TJ, Korn G (2012) Laser-driven proton acceleration enhancement by nanostructured foils. Phys Rev Lett 109:234801

    Article  CAS  PubMed  Google Scholar 

  22. Yan XQ, Lin C, Sheng ZM, Guo ZY, Liu BC, Lu YR, Fang JX, Chen JE (2008) Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys Rev Lett 100:135003

    Article  CAS  PubMed  Google Scholar 

  23. Rykovanov SG, Schreiber J, Meyer-ter-Vehn J, Bellei C, Henig A, Wu HC, Geissler M (2008) Ion acceleration with ultra-thin foils using elliptically polarized laser pulses. New J Phys 10:113005

    Article  Google Scholar 

  24. Klimo O, Limpouch J, Tikhonchuk VT (2008) Monoenergetic ion beams form ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys Rev Spec Top 11:031301

    Google Scholar 

  25. Heining A, Steinke S, Schnurer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich BM, Yan XQ, Meyer-ter-Vehn J, Tajima T, Nickles PV, Sandner W, Habs D (2009) Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys Rev Lett 103:245003

    Article  Google Scholar 

  26. Pae KH, Choi IW, Lee J (2011) Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime. Laser Part Beams 29:11–16

    Article  CAS  Google Scholar 

  27. Pae KH, Choi IW, Lee J (2010) Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration. Phys Plasmas 17:123104

    Article  Google Scholar 

  28. Kim IJ et al (2012) Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors. Nat Commun 3:1231

    Article  PubMed Central  PubMed  Google Scholar 

  29. Esirkepov TZh (2001) Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput Phys Commun 135:144–153

    Article  CAS  Google Scholar 

  30. Macchi A, Veghini S, Pegoraro F (2009) “Light Sail” acceleration reexamined. Phys Rev Lett 103:085003

    Article  PubMed  Google Scholar 

  31. Yogo A, Sato K, Nishikino M, Teshima M, Mori T et al (2009) Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl Phys Lett 94:181502

    Article  Google Scholar 

  32. Kraft SD, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan TE, Dammene Y, Enghardt W, Helbig U, Karsch L, Kluge T, Laschinsky L, Schürer M, Sobiella M, Woithe J, Schramm U, Pawelke J (2010) Dose-dependent biological damage of tumor cells by laser-accelerated proton beams. New J Phys 12:085003

    Article  Google Scholar 

  33. Yogo A, Maeda T, Hori T, Sakaki H, Ogura K et al (2011) Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasi-monoenergetic proton beamline. Appl Phys Lett 98:053701

    Article  Google Scholar 

  34. Susanne A, Volker H, Christoph G, Guido AD, Thomas ES, Claus B, Günther D, Anna AF (2011) Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat Oncol 6:139

    Article  Google Scholar 

  35. Doria D, Kakolee KF, Kar S, Litt SK, Fiorini F et al (2012) Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv 2:011209

    Article  Google Scholar 

  36. Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, Kanai T (2007) Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys 34:1085–1097

    Article  CAS  PubMed  Google Scholar 

  37. Agostinelli S, Allison J, Amako K, Apostolakis J et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026071). Additional support was received from the National Cancer Center, Korea (Research Grant No. 1210210-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hoon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S.H., Cho, I., Cho, S. et al. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon–proton mixed target. Australas Phys Eng Sci Med 37, 635–644 (2014). https://doi.org/10.1007/s13246-014-0292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0292-7

Keywords

Navigation