Skip to main content

A New Study of Bragg Curve of the 12C Ion at Energies Ranging 200–400 MeV/u with the Contribution of Secondary Fragments in Hadrontherapy Using the PHITS Monte Carlo Code

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023) (AI2SD 2023)

Abstract

Due to the Bragg peak’s (BP) shown ballistic accuracy and increasing relative biological effectiveness (RBE) at the end of the course, hadron therapy promises to significantly improve radiation therapy. As a result, tumors that are challenging to treat, incompletely resected, or radiation-resistant are specially treated with hadron therapy. The energy loss is predominantly driven by inelastic electron collision mechanisms in the energy range used in charged particle treatment (60 to 450 MeV/u). However, in several cases, nuclear collisions contribute to the generation of fragments. These fragments present a significant disadvantage for medical applications as they deposit energy that reduces the quality of the Bragg peak (BP), particularly in its tail, leading to unnecessary dose to healthy tissue behind the target. The purpose of this research is to assess, via Monte-Carlo simulation, the contribution to the dose of secondary particles created during the interaction of a 12C ion beam in a water phantom using the Particle and Heavy Ion Transport Code System (PHITS) code. First, the code was validated by comparing the simulation output to an experimental result derived from NSRL data. The second step was to assess the depth dose from the 12C ion beam as well as the contribution of primary and secondary particles to the overall dose in a water phantom. Finally, a thorough simulation of the contribution of fragments from a 400 MeV/u carbon ion beam was carried out. The results of these distributions are of great interest for considering the effect of fragments in carbon therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, R.R.: Radiological use of fast protons. Radiology 47(5), 487–491 (1946). https://doi.org/10.1148/47.5.487

    Article  Google Scholar 

  2. Bragg, W.H.S., Kleeman, R.: LXXIV. On the ionization curves of radium, Philosophical Magazine Series 1, 8, 726–738 (1904).https://doi.org/10.1080/14786440409463246

  3. Lawrence, J.H., et al.: Pituitary irradiation with high-energy proton beams: a preliminary report. Cancer Res. 18(2), 121–134 (1958)

    Google Scholar 

  4. Tsujii, H., et al.: Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother Oncol. 73 Suppl 2, S41–9 (2004). https://doi.org/10.1016/s0167-8140(04)80012-4

  5. Particle therapy co-operative group homepage. https://www.ptcog.site/index.php/facilities-in-operation-public. Accessed 16 Apr 2023

  6. Schardt, D., Elsässer, T., Schulz-Ertner, D.: Heavy-ion tumor therapy: physical and radiobiological benefits. Rev. Mod. Phys. 82(1), 383–425 (2010). https://doi.org/10.1103/RevModPhys.82.383

    Article  Google Scholar 

  7. Byun, H.K., et al.: Physical and biological characteristics of particle therapy for oncologists. Cancer Res. Treat. 53(3), 611–620 (2021). https://doi.org/10.4143/crt.2021.066

    Article  Google Scholar 

  8. Yonai, S., Furukawa, T., Inaniwa, T.: Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system. Radiat. Prot. Dosimetry 161(1–4), 433–436 (2014). https://doi.org/10.1093/rpd/nct251

    Article  Google Scholar 

  9. Zeitlin, C., et al.: Fragmentation cross sections of 290 and 400 MeV/nucleon 12C beams on elemental targets. Phys. Rev. C 76(1), 014911 (2007). https://doi.org/10.1103/PhysRevC.76.014911

    Article  Google Scholar 

  10. Agostinelli, S., et al.: Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  11. Ferrari, A., Sala Paola, R., Fasso, A., Ranft, J.: FLUKA: A multi-particle transport code (Program version 2005). CERN-2005–010, SLAC-R-773, INFN-TC-05–11, CERN-2005–10, (2005). https://doi.org/10.2172/877507, https://doi.org/10.5170/CERN-2005-010

  12. Battistoni, C.F., et al.: The FLUKA code: description and benchmarking (2007). https://doi.org/10.1063/1.2720455

  13. Pelowitz, D.B., et al.: MCNPX 2.7E extensions. (in English), no. LA-UR-11–01502; LA-UR-11–1502, p. Medium: ED (2011). https://doi.org/10.2172/1058045

  14. Sato, T., et al.: Features of particle and heavy Ion transport code system (PHITS) version 3.02. J. Nucl. Sci. Technol. 55(6), 684–690 (2018).https://doi.org/10.1080/00223131.2017.1419890

  15. Dementyev, A.V., Sobolevsky, N.M.: Shield — universal Monte Carlo hadron transport code: scope and applications. Radiat. Meas. 30(5), 553–557 (1999). https://doi.org/10.1016/S1350-4487(99)00231-0

    Article  Google Scholar 

  16. Brookhaven national laboratory homepage. https://www.bnl.gov/nsrl/userguide/bragg-curves-and-peaks.php. Accessed 1 Oct 2022

  17. Iwamoto, Y., et al.: Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol. 54(5), 617–635 (2017). https://doi.org/10.1080/00223131.2017.1297742

    Article  Google Scholar 

  18. ATIMA homepage. https://web-docs.gsi.de/~weick/atima/. Accessed 20 Oct 2022

  19. Hirayama, H., Namito, Y., Bielajew, A.F, Wilderman, S.J., Nelson, W.R: The EGS5 code system. Report No.: Technical Report SLAC-R-730 and KEK Report 2005–8 (2005)

    Google Scholar 

  20. International commission on radiation units and measurements. key data for ionizing-radiation dosimetry: measurement standards and application. ICRU Report 90. 14 (2016)

    Google Scholar 

  21. Boudard, A., Cugnon, J., David, J.C., Leray, S., Mancusi, D.: New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys. Rev. C 87(1), 014606 (2013). https://doi.org/10.1103/PhysRevC.87.014606

    Article  Google Scholar 

  22. Shibata, K., et al.: JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48(1), 1–30 (2011). https://doi.org/10.1080/18811248.2011.9711675

  23. Niita, K., et al.: Analysis of the (N, xN’) reactions by quantum molecular dynamics plus statistical decay model. Phys. Rev. C Nucl. Phys. 52(5), 2620–2635 (1995). https://doi.org/10.1103/physrevc.52.2620

    Article  Google Scholar 

  24. Ogawa, T., Sato, T., Hashimoto, S., Satoh, D., Tsuda, S., Niita, K.: Energy- dependent fragmentation cross sections of relativistic 12C. Phys. Rev. C 92, 024614 (2015). https://doi.org/10.1103/PhysRevC.92.024614

    Article  Google Scholar 

  25. Iida, K., Kohama, A., Oyamatsu, K.: Formula for proton-nucleus reaction cross section at intermediate energies and its application. J. Phys. Soc. Japan. 76, 044201 (2007). https://doi.org/10.1143/jpsj.76.044201

    Article  Google Scholar 

  26. Sihver, K.A., Iida, L., Oyamatsu, K., Hashimoto, S., Iwase, H., et al.: Current status of the “hybrid Kurotama model” for total reaction cross sections. Nucl. Instrum. Meth. B. 334, 34–39 (2014). https://doi.org/10.1016/j.nimb.2014.04.021

    Article  Google Scholar 

  27. Satoh, D., Sato, T.: Improvements in the particle and heavy-ion transport code system (PHITS) for simulating neutron-response functions and detection efficiencies of a liquid organic scintillator. J. Nucl. Sci. Technol. 59(8), 1047–1060 (2022). https://doi.org/10.1080/00223131.2021.2019622

    Article  Google Scholar 

  28. Furihata, S.: The GEM Code - the generalized evaporation model and the fission model. In: Kling, A., Baräo, F.J.C., Nakagawa, M., Távora, L., Vaz, P. (eds.) Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, pp. 1045–1050. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-18211-2_168

    Chapter  Google Scholar 

  29. Haettner, E., Iwase, H., Kramer, M., Kraft, G., Schardt, D.: Experimental study of nuclear fragmentation of 200 and 400 MeV/u (12)C ions in water for applications in particle therapy. Phys. Med. Biol. 58(23), 8265–8279 (2013). https://doi.org/10.1088/0031-9155/58/23/8265

    Article  Google Scholar 

  30. Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72(11), 1114–1115 (1947). https://doi.org/10.1103/PhysRev.72.1114

    Article  Google Scholar 

  31. Gunzert-Marx, K., Iwase, H., Schardt, D., Simon, R.S.: Secondary beam fragments produced by 200 MeV u−1 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal. Phys. 10(7) 2008.https://doi.org/10.1088/1367-2630/10/7/075003

  32. Puchalska, M., Tessonnier, T., Parodi, K., Sihver, L.: Benchmarking of PHITS for carbon Ion therapy. Int. J. Part Ther. 4(3), 48–55 Winter (2018). https://doi.org/10.14338/IJPT-17-00029.1

  33. Ying, C.K., Bolst, D., Tran, L.T., Guatelli, S., Rosenfeld, A.B., Kamil, W.A.: Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation. J. Phys. Conf. Ser. 851, 012033 (2017). https://doi.org/10.1088/1742-6596/851/1/012033

    Article  Google Scholar 

  34. Abe, T., et al.: A multi-institutional retrospective study of carbon-ion radiotherapy for non-squamous cell malignant tumors of the nasopharynx: subanalysis of Japan carbon-ion radiation oncology study group study 1402 HN. Cancer Med. 7(12), 6077–6083 (2018). https://doi.org/10.1002/cam4.1884

    Article  Google Scholar 

  35. Reiazi, R., Norozi, A., Etedadialiabadi, M.: A literature survey on cost-effectiveness of proton beam therapy in the management of breast cancer patients. Iran. J. Cancer Prev. 8(6), e4373 (2015). https://doi.org/10.17795/ijcp-4373

  36. Ou, H.-F., Zhang, B., Zhao, S.-J.: Monte Carlo simulation for calculation of fragments produced by 400MeV/u carbon ion beam in water. Nucl. Instrum. Meth. Phys. Res., Sect. B 396, 18–25 (2017). https://doi.org/10.1016/j.nimb.2017.01.077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane El Bekkouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Bekkouri, H. et al. (2024). A New Study of Bragg Curve of the 12C Ion at Energies Ranging 200–400 MeV/u with the Contribution of Secondary Fragments in Hadrontherapy Using the PHITS Monte Carlo Code. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 904. Springer, Cham. https://doi.org/10.1007/978-3-031-52388-5_23

Download citation

Publish with us

Policies and ethics