Skip to main content
Log in

Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT

  • Review
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Computed tomography (CT) is the single biggest ionising radiation risk from anthropogenic exposure. Reducing unnecessary carcinogenic risks from this source requires the determination of organ and tissue absorbed doses to estimate detrimental stochastic effects. In addition, effective dose can be used to assess comparative risk between exposure situations and facilitate dose reduction through optimisation. Children are at the highest risk from radiation induced carcinogenesis and therefore dosimetry for paediatric CT recipients is essential in addressing the ionising radiation health risks of CT scanning. However, there is no well-defined method in the clinical environment for routinely and reliably performing paediatric CT organ dosimetry and there are numerous methods utilised for estimating paediatric CT effective dose. Therefore, in this study, eleven computational methods for organ dosimetry and/or effective dose calculation were investigated and compared with absorbed doses measured using thermoluminescent dosemeters placed in a physical anthropomorphic phantom representing a 10 year old child. Three common clinical paediatric CT protocols including brain, chest and abdomen/pelvis examinations were evaluated. Overall, computed absorbed doses to organs and tissues fully and directly irradiated demonstrated better agreement (within approximately 50 %) with the measured absorbed doses than absorbed doses to distributed organs or to those located on the periphery of the scan volume, which showed up to a 15-fold dose variation. The disparities predominantly arose from differences in the phantoms used. While the ability to estimate CT dose is essential for risk assessment and radiation protection, identifying a simple, practical dosimetry method remains challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2010) Sources and effects of ionizing radiation. UNSCEAR 2008 Report to the General Assembly. Annex A: medical radiation exposures, vol I. United Nations, New York

  2. Mettler FA, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, Lipoti JA, Mahesh M, McCrohan JL, Stabin MG, Thomadsen BR, Yoshizumi TT (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation source 1950–2007. Radiology 253(2):520–531

    Article  PubMed  Google Scholar 

  3. Brady Z, Cain TM, Johnston PN (2011) Paediatric CT imaging trends in Australia. J Med Imaging Radiat Oncol 55:132–142

    Article  PubMed  Google Scholar 

  4. National Research Council of the National Academies. Board on Radiation Effects Research (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC

  5. International Commission on Radiological Protection (ICRP) (2007) The 2007 recommendations of the international commission on radiological protection, ICRP Publication 103. Ann ICRP 37(2–4):1–332

    Google Scholar 

  6. International Commission on Radiological Protection (ICRP) (2007) Radiological protection in medicine, ICRP Publication 105. Ann ICRP 37(6):1–64

    Google Scholar 

  7. Xu GX, Eckerman KF (2010) Handbook of anatomical models for radiation dosimetry. CRC Press, Florida

  8. Nishizawa K, Mori S, Ohno M, Yanagawa N, Yoshida T, Akahane K, Iwai K, Wada S (2008) Patient dose estimation for multi-detector-row CT examinations. Radiat Prot Dosim 128(1):98–105

    Article  CAS  Google Scholar 

  9. Brisse HJ, Robilliard M, Savignoni A, Pierrat N, Gaboriaud G, De Rycke Y, Neuenschwander S, Aubert B, Rosenwald JC (2009) Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Phys 97(4):303–314

    Article  PubMed  CAS  Google Scholar 

  10. Brady Z, Cain TM, Johnston PN (2011) Differences in using the international commission on radiological protection’s publications 60 and 103 for determining effective dose in paediatric CT examinations. Radiat Meas 46(12):2031–2034

    Article  CAS  Google Scholar 

  11. Hollingsworth CL, Yoshizumi TT, Frush DP, Chan FP, Toncheva G, Nguyen G, Lowry CR, Hurwitz LM (2007) Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol 189(1):12–18

    Article  PubMed  Google Scholar 

  12. Yoshizumi TT, Goodman PC, Frush DP, Nguyen G, Toncheva G, Sarder M, Barnes L (2007) Validation of metal oxide semiconductor field effect transistor technology for organ dose assessment during CT: comparison with thermoluminescent dosimetry. AJR Am J Roentgenol 188(5):1332–1336

    Article  PubMed  Google Scholar 

  13. ImPACT (2011) ImPACT CT dosimetry calculator, version 1.0.4. St. George’s Healthcare NHS Trust, London

  14. Stamm G, Nagel HD (2011) CT-Expo V2.0.1: a tool for dose evaluation in computed tomography. Hannover

  15. Le Heron JC (1993) CTDOSE. National Radiation Laboratory (NRL), Christchurch

  16. CT Dose. National Institute of Radiation Hygiene, Herlev

  17. ImpactDose. IBA Dosimetry, Germany

  18. Kalender WA, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9(3):555–562

    Article  PubMed  CAS  Google Scholar 

  19. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2011) Patient-specific radiation dose and cancer risk for pediatric chest CT. Radiology 259(3):862–874

    Article  PubMed  Google Scholar 

  20. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Toncheva G, Yoshizumi TT, Frush DP (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II.Application to patients. Med Phys 38(1):408–419

    Article  PubMed  Google Scholar 

  21. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Toncheva G, Yoshizumi TT, Frush DP (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. Development and validation of a Monte Carlo program. Med Phys 38(1):397–407

    Article  PubMed  Google Scholar 

  22. Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF (2010) The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys 37(4):1816–1825

    Article  PubMed  Google Scholar 

  23. Turner AC, Zhang D, Khatonabadi M, Zankl M, DeMarco JJ, Cagnon CH, Cody DD, Stevens DM, McCollough CH, McNitt-Gray MF (2011) The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams. Med Phys 38(2):820–829

    Article  PubMed  Google Scholar 

  24. Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. Am J Roentgenol 188(2):540–546

    Article  Google Scholar 

  25. Thomas K, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38(6):645–656

    Article  PubMed  Google Scholar 

  26. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194(4):881–889

    Article  PubMed  Google Scholar 

  27. Geleijns J, Van Unnik JG, Zoetelief J, Zweers D, Broerse JJ (1994) Comparison of two methods for assessing patient dose from computed tomography. Br J Radiol 67(796):360–365

    Article  PubMed  CAS  Google Scholar 

  28. Brix G, Lechel U, Veit R, Truckenbrodt R, Stamm G, Coppenrath EM, Griebel J, Nagel HD (2004) Assessment of a theoretical formalism for dose estimation in CT: an anthropomorphic phantom study. Eur Radiol 14(7):1275–1284

    Article  PubMed  CAS  Google Scholar 

  29. Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK (2004) 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol 77(920):662–665

    Article  PubMed  CAS  Google Scholar 

  30. Lechel U, Becker C, Langenfeld-Jager G, Brix G (2009) Dose reduction by automatic exposure control in multidetector computed tomography: comparison between measurement and calculation. Eur Radiol 19(4):1027–1034

    Article  PubMed  CAS  Google Scholar 

  31. Lee C, Kim KP, Long D, Fisher R, Tien C, Simon SL, Bouville A, Bolch WE (2011) Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys 38(3):1196–1206

    Article  PubMed  Google Scholar 

  32. Kim KP, Lee J, Bolch WE (2011) CT dosimetry computer codes: their influence on radiation dose estimates and the necessity for their revision under new ICRP radiation protection standards. Radiat Prot Dosim 146(1–3):252–255

    Article  Google Scholar 

  33. Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18(4):759–772

    Article  PubMed  Google Scholar 

  34. International Commission on Radiological Protection (ICRP) (1991) 1990 Recommendations of the international commission on radiological protection, ICRP Publication 60. Ann ICRP 21(1–3):1–201

    Google Scholar 

  35. Snyder WS, Ford MR, Warner GG, Fisher HL (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5. Society of Nuclear Medicine, New York

  36. Cristy M (1980) Mathematical phantoms representing children of various ages for use in estimates of internal dose. US Nuclear Regulatory Commission Report. NUREG/CR-1159 (also Oak Ridge National Laboratory Report. ORNL/NUREG/TM-367). Oak Ridge National Laboratory, Oak Ridge

  37. Cristy M, Eckerman KF (1987) Specific absorbed fractions of energy at various ages from internal photon sources (I. Methods). Report ORNL/TM-8381/V1. Oak Ridge National Laboratory, Oak Ridge

  38. Kramer R, Zankl M, Williams G, Drexler G (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods Part I: The male (ADAM) and female (EVA) adult mathematical phantoms. GSF Report S-885. National Research Center for Environment and Health (GSF), Neuherberg

  39. Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, Drexler G (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys 27(2):153–164

    Article  PubMed  CAS  Google Scholar 

  40. Caon M, Bibbo G, Pattison J (1999) An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Phys Med Biol 44(9):2213–2225

    Article  PubMed  CAS  Google Scholar 

  41. Saito K, Wittmann A, Koga S, Ida Y, Kamei T, Funabiki J, Zankl M (2001) Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiat Environ Biophys 40(1):69–75

    Article  PubMed  CAS  Google Scholar 

  42. Petoussi-Henss N, Zanki M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47(1):89–106

    Article  PubMed  Google Scholar 

  43. Kramer R, Vieira JW, Khoury HJ, Lima FR, Fuelle D (2003) All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys Med Biol 48(10):1239–1262

    Article  PubMed  CAS  Google Scholar 

  44. Fill UA, Zankl M, Petoussi-Henss N, Siebert M, Regulla D (2004) Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys 86(3):253–272

    Article  PubMed  CAS  Google Scholar 

  45. Lee C, Park SH, Lee JK (2006) Development of the two Korean adult tomographic computational phantoms for organ dosimetry. Med Phys 33(2):380–390

    Article  PubMed  Google Scholar 

  46. Lee C, Williams JL, Bolch WE (2006) Whole-body voxel phantoms of paediatric patients—UF Series B. Phys Med Biol 51(18):4649–4661

    Article  PubMed  Google Scholar 

  47. Lee C, Lodwick D, Hasenauer D, Williams JL, Bolch WE (2007) Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Phys Med Biol 52(12):3309–3333

    Article  PubMed  Google Scholar 

  48. Lee C, Lodwick D, Williams JL, Bolch WE (2008) Hybrid computational phantoms of the 15-year male and female adolescent: applications to CT organ dosimetry for patients of variable morphometry. Med Phys 35(6):2366–2382

    Article  PubMed  Google Scholar 

  49. Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE (2010) The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol 55(2):339–363

    Article  PubMed  Google Scholar 

  50. Xu XG, Taranenko V, Zhang J, Shi C (2007) A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9. Phys Med Biol 52(23):7023–7044

    Article  PubMed  Google Scholar 

  51. Segars WP, Mahesh M, Beck TJ, Frey EC, Tsui BM (2008) Realistic CT simulation using the 4D XCAT phantom. Med Phys 35(8):3800–3808

    Article  PubMed  CAS  Google Scholar 

  52. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2008) Patient-specific dose estimation for pediatric chest CT. Med Phys 35(12):5821–5828

    Article  PubMed  Google Scholar 

  53. International Commission on Radiological Protection (ICRP) (2002) Basic anatomical and physiological data for use in radiological protection: reference values, ICRP Publication 89. Ann ICRP 32(3–4):1–277

    Google Scholar 

  54. International Commission on Radiological Protection (ICRP) (2006) Human alimentary tract model for radiological protection, ICRP Publication 100. Ann ICRP 36:1–327

    Google Scholar 

  55. Jones DG, Shrimpton PC (1991) Survey of CT Practice in the UK. Part 3: normalised organ doses calculated using Monte Carlo techniques. NRPB-R250. National Radiological Protection Board (NRPB), Chilton

  56. Jones DG, Shrimpton PC (1993) Normalized organ doses for X-ray computed tomography calculated using Monte Carlo techniques. NRPB SR-250. National Radiological Protection Board (NRPB), Chilton

  57. Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods Part VI: organ doses from computed tomographic examinations. GSF Report 30/91. National Research Center for Environment and Health (GSF), Neuherberg

  58. Zankl M, Panzer W, Drexler G (1993) Tomographic anthropomorphic models, part II: organ doses from computed tomographic examinations in paediatric radiology. GSF Report 30/93. National Research Centre for Environment and Health (GSF), Neuherberg

  59. Shrimpton PC, Edyvean S (1998) CT scanner dosimetry. Br J Radiol 71(841):1–3

    PubMed  CAS  Google Scholar 

  60. Lewis M, Edyvean S, Sassi S, Kiremidjian H, Keat N, Britten A (2000) Estimating patient dose on current CT scanners: results of the ImPACT CT dose survey. RAD Mag 26:17–18

    Google Scholar 

  61. Nagel HD (2002) Radiation exposure in computed tomography: fundamentals, influencing parameters, dose assessment, optimisation, scanner data, terminology. CTB Publications, Hamburg

  62. Shrimpton PC (2004) 2004 CT quality criteria. Appendix C: assessment of patient dose in CT (also NRPB-PE/1/2004). National Radiological Protection Board (NRPB), Oxon

  63. Veit R, Zankl M, Petoussi N, Mannweiler E, Williams G, Drexler G (1989) Tomographic anthropomorphic models, part I: construction technique and description of models of an 8 week old baby and a 7 year old child. GSF Report 3/89. National Research Centre for Environment and Health (GSF), Neuherberg

  64. Shrimpton PC, Wall BF (2000) Reference doses for paediatric computed tomography. Radiat Prot Dosim 90(1–2):249–252

    Article  Google Scholar 

  65. Chapple CL, Willis S, Frame J (2002) Effective dose in paediatric computed tomography. Phys Med Biol 47(1):107–115

    Article  PubMed  CAS  Google Scholar 

  66. Khursheed A, Hillier MC, Shrimpton PC, Wall BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 75(898):819–830

    PubMed  CAS  Google Scholar 

  67. Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK:2003 Br J Radiol 79(948):968–980

    Article  PubMed  CAS  Google Scholar 

  68. Shrimpton PC, Wall BF (2009) Effective dose and dose-length product in CT. Radiology 250(2):604–605

    Article  PubMed  Google Scholar 

  69. Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80(956):639–647

    Article  PubMed  CAS  Google Scholar 

  70. Zankl M, Panzer W, Petoussi-Henss H, Drexler G (1995) Organ doses for children from computed tomographic examinations. Radiat Prot Dosim 57(1–4):393–396

    Google Scholar 

  71. STUK (2008) PCXMC dose calculations, version 2.0. Radiation and Nuclear Safety Authority (STUK), Helsinki

  72. Tapiovaara M, Siiskonen T (2008) PCXMC: a PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations, 2nd edn. Report STUK-A139. Radiation and Nuclear Safety Authority (STUK), Helsinki

  73. Lee C, Lee C, Staton RJ, Hintenlang DE, Arreola MM, Williams JL, Bolch WE (2007) Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination. Med Phys 34(5):1858–1873

    Article  PubMed  Google Scholar 

  74. Zankl M, Fill U, Petoussi-Henss N, Regulla D (2002) Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol 47(14):2367–2385

    Article  Google Scholar 

  75. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257(1):158–166

    Article  PubMed  Google Scholar 

  76. Lindskoug BA (1992) The reference man in diagnostic radiology dosimetry. Br J Radiol 65(773):431–437

    Article  PubMed  CAS  Google Scholar 

  77. McCollough CH, Zink FE (1999) Performance evaluation of a multi-slice CT system. Med Phys 26(11):2223–2230

    Article  PubMed  CAS  Google Scholar 

  78. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36(2):57–68

    Article  PubMed  Google Scholar 

  79. Brady Z, Wallace AB, Wilkinson L, Heggie JCP, Hayton A, Einsiedel P, Forsythe A, Mathews JD (2011) Introduction to the Australian study of low dose radiation—assessing the effects of CT scans in childhood (EPSM ABEC 2011 conference proceedings). Australas Phys Eng Sci Med 34(4):611

    Google Scholar 

  80. Pearce MS, Salotti JA, McHugh K, Metcalf W, Kim KP, Craft AW, Parker L, Ron E (2011) CT scans in young people in Northern England: trends and patterns 1993–2002. Pediatr Radiol 41(7):832–838

    Article  PubMed  Google Scholar 

  81. Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, McCollough CH, Mettler FA, Pearce MS, Suleiman OH, Thrall JH, Wagner LK (2011) Managing radiation use in medical imaging: a multifaceted challenge. Radiology 258(3):889–905

    Article  PubMed  Google Scholar 

  82. International Commission on Radiological Protection (ICRP) (2009) Adult reference computational phantoms, ICRP Publication 110. Ann ICRP 39(2):1–164

    Google Scholar 

  83. Zankl M, Becker J, Fill U, Petoussi-Henss N, Eckerman KF (2005) GSF male and female adult voxel models representing ICRP reference man—the present status, the Monte Carlo method: versatility unbounded in a dynamic computing world. American Nuclear Society, LaGrange Park

  84. van der Molen AJ, Geleijns J (2007) Overranging in multisection CT: quantification and relative contribution to dose-comparison of four 16-section CT scanners. Radiology 242(1):208–216

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Luke Wilkinson at St. Vincent’s Hospital Melbourne and Anthony Wallace at ARPANSA for their advice and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, Z., Cain, T.M. & Johnston, P.N. Comparison of organ dosimetry methods and effective dose calculation methods for paediatric CT. Australas Phys Eng Sci Med 35, 117–134 (2012). https://doi.org/10.1007/s13246-012-0134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0134-4

Keywords

Navigation