Skip to main content
Log in

Poly(vinyl alcohol) membranes in wound-dressing application: microstructure, physical properties, and drug release behavior

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA) hydrogel membranes were prepared through three different preparation methods including freeze-thawing (FT), solution casting (SC) followed by thermal annealing, and phase separation (PS). The prepared hydrogels were characterized by Fourier transform-infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy. Nitrofurazone (NFZ) was then loaded in the hydrogels. FT and SC methods led to obtaining dense membranes, while PS method resulted in an asymmetric one. The effects of hydrogel preparation method on water absorption, gel fraction, water vapor and oxygen permeabilities, bacterial barrier, tensile properties, and drug release profiles were investigated. The water vapor permeability of the hydrogel prepared through PS method was about 1.5 times higher than those obtained through FT and SC methods. Gel formation in PS method is probably responsible for the highest degree of crystallinity, and consequently the maximum gel fraction for the corresponded membrane. The elongation-at-break for this membrane in wet state was 41% higher than that made by FT method and 18% greater than that of SC method. Membranes prepared by all three methods showed excellent barrier property against bacterial penetration during 1 week. The results showed that PS membrane could control the release of NFZ more effectively as compared with the other two samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Patachia S, Valente AJM, Papanceaa A, Lobo VMM (2009) Poly(vinyl alcohol) (PVA)-based polymer membranes. Nova Science Publishers Incorporated, New York

    Google Scholar 

  2. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100:1451–1457

    Article  Google Scholar 

  3. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  4. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  5. Stauffer SR, Peppast NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33:3932–3936

    Article  CAS  Google Scholar 

  6. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  7. Hennink W, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  8. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Advances in polymer science book series, Biopolymers, PVA hydrogels, anionic polymerisation, nanocomposites, vol 153. Springer, Berlin

  9. Alves MH, Jensen BE, Smith AA, Zelikin AN (2011) Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci 11:1293–1313

    Article  CAS  Google Scholar 

  10. Peppas NA (1975) Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Macromol Chem Phys 176:3433–3440

    Article  CAS  Google Scholar 

  11. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37:1921–1927

    Article  CAS  Google Scholar 

  12. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233

    Article  CAS  Google Scholar 

  13. Peppas N, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly (acrylic acid) and poly (ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14:291–297

    Article  CAS  Google Scholar 

  14. Assender HE, Windle AH (1998) Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer 39:4295–4302

    Article  CAS  Google Scholar 

  15. Mallapragada SK, Peppas NA (1996) Dissolution mechanism of semicrystalline poly (vinyl alcohol) in water. J Polym Sci B Polym Phys 34:1339–1346

    Article  CAS  Google Scholar 

  16. Young TH, Yao NK, Chang RF, Chen LW (1996) Evaluation of asymmetric poly(vinyl alcohol) membranes for use in artificial islets. Biomaterials 17:2139–2145

    Article  CAS  Google Scholar 

  17. Chuang WY, Young TH, Chiu WY, Lin CY (2000) The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer 41:5633–5641

    Article  CAS  Google Scholar 

  18. Fejerskov B, Jensen BE, Jensen NB, Chong SF, Zelikin AN (2012) Engineering surface adhered poly(vinyl alcohol) physical hydrogels as enzymatic microreactors. ACS Appl Mater Interfaces 4:4981–4990

    Article  CAS  Google Scholar 

  19. Fejerskov B, Smith AA, Jensen BE, Hussmann T, Zelikin AN (2012) Bioresorbable surface-adhered enzymatic microreactors based on physical hydrogels of poly(vinyl alcohol). Langmuir 29:344–354

    Article  Google Scholar 

  20. Liu Y, Vrana NE, Cahill PA, McGuinness GB (2009) Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater 90:492–502

    Article  CAS  Google Scholar 

  21. Kouchak M, Ameri A, Naseri B, Boldaji SK (2014) Chitosan and polyvinyl alcohol composite films containing nitrofurazone: preparation and evaluation. Iran J Basic Med Sci 17:14–20

    CAS  Google Scholar 

  22. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240

    Article  CAS  Google Scholar 

  23. Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  Google Scholar 

  24. Barrer R, Rideal EK (1939) Permeation, diffusion and solution of gases in organic polymers. Trans Faraday Soc 35:628–643

    Article  CAS  Google Scholar 

  25. Samadi A, Navarchian AH (2016) Matrimidpolyaniline/clay mixed-matrix membranes with plasticization resistance for separation of CO2 from natural gas. Polymer Adv Tech 27:1228–1236

    Article  Google Scholar 

  26. Naseri M, Mousavi SF, Mohammadi T, Bakhtiari O (2015) Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes. J Ind Eng Chem 29:249–256

    Article  CAS  Google Scholar 

  27. Taylor J (1997) Introduction to error analysis, the study of uncertainties in physical measurements. University Science Books, Sauselito

    Google Scholar 

  28. Bahrami SB, Kordestani SS, Mirzadeh H, Mansoori P (2003) Poly(vinyl alcohol)-chitosan blends: preparation, mechanical and physical properties. Iran Polym J 12:139–146

    CAS  Google Scholar 

  29. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci B Polym Phys 47:1069–1077

    Article  CAS  Google Scholar 

  30. Bajpai AK, Bajpai J, Shukla S (2003) Release dynamics of tetracycline from a loaded semi-interpenetrating polymeric material of polyvinyl alcohol and poly (acrylamide-co-styrene). J Mater Sci Mater Med 14:347–357

    Article  CAS  Google Scholar 

  31. Zehnder AT, Viz MJ (2005) Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads. Appl Mech Rev 58:37–48

    Article  Google Scholar 

  32. Cha WI, Hyon SH, Ikada Y (1993) Microstructure of poly(vinyl alcohol) hydrogels investigated with differential scanning calorimetry. Macromol Chem Phys 194:2433–2441

    Article  CAS  Google Scholar 

  33. Guan Y, Qi XM, Zhang B, Chen GG, Peng F, Sun RC (2015) Physically crosslinked composite hydrogels of hemicelluloses with poly(vinyl alcohol phosphate) and chitin nanowhiskers. BioResources 10:1378–1393

    CAS  Google Scholar 

  34. Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Char 23:9–19

    Article  Google Scholar 

  35. Tang CM, Tian YH, Hsu SH (2015) Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8:4895–4911

    Article  Google Scholar 

  36. Hodge R, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  37. Ahad N, Saion E, Gharibshahi E (2012) Structural, thermal, and electrical properties of PVA-sodium salicylate solid composite polymer electrolyte. J Nanomater 2012:94–102

    Article  Google Scholar 

  38. Sakurada I (1985) Polyvinyl alcohol fibers. Marcel Dekker, New York

    Google Scholar 

  39. Patachia S, Florea C, Friedrich C, Thomann Y (2009) Tailoring of poly(vinyl alcohol) cryogels properties by salts addition. Express Polym Lett 3:320–331

    Article  CAS  Google Scholar 

  40. Komiya S, Otsuka E, Hirashima Y, Suzuki A (2011) Salt effects on formation of microcrystallites in poly(vinyl alcohol) gels prepared by cast-drying method. Prog Nat Sci Mater Int 21:375–379

    Article  Google Scholar 

  41. Kenney J, Willcockson G (1966) Structure–property relationships of poly(vinyl alcohol). III. Relationships between stereo-regularity, crystallinity, and water resistance in poly(vinyl alcohol). J Polym Sci A Polym Chem 4:679–698

    Article  CAS  Google Scholar 

  42. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479

    Article  CAS  Google Scholar 

  43. Fukumori T, Nakaoki T (2013) Significant improvement of mechanical properties for polyvinyl alcohol film prepared from freeze/thaw cycled gel. Open J Org Polym Mater 3:110–116

    Article  Google Scholar 

  44. Bhajantri RF, Ravindrachary V, Harisha A, Crasta V, Nayak SP, Poojary B (2006) Microstructural studies on BaCl2 doped poly(vinyl alcohol). Polymer 47:3591–3598

    Article  CAS  Google Scholar 

  45. Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554

    Article  CAS  Google Scholar 

  46. Bedane AH, Huang Q, Xiao H, Ei M (2012) Mass transfer of water vapor, carbon dioxide and oxygen on modified cellulose fiber-based materials. Nord Pulp Pap Res J27:409–417

    Article  Google Scholar 

  47. Devi MP, Sastry T, Meignanalakshmi S (2012) Preparation and characterization of fibrin-chitosan composite and its in vivo studies. Int J Pharm 2:21–32

    Google Scholar 

  48. Razzak MT, Darwis D (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    Article  CAS  Google Scholar 

  49. Ladewig B, Al-Shaeli MNZ (2016) Fundamentals of membrane bioreactors: materials, systems and membrane fouling. Springer, Singapore

    Google Scholar 

  50. Kim SJ (2007) Gas permeation through water-swollen sericin/PVA membranes. University of Waterloo, Waterloo

    Google Scholar 

  51. Konidari M, Papadokostaki K, Sanopoulou M (2011) Moisture-induced effects on the tensile mechanical properties and glass-transition temperature of poly(vinyl alcohol) films. J Appl Polym Sci 120:3381–3386

    Article  CAS  Google Scholar 

  52. Ward IM, Sweeney J (2012) Mechanical properties of solid polymers. Wiley, West Sussex

    Book  Google Scholar 

  53. Kim S, Jang KS, Choi HD, Choi SH, Kwon SJ, Kim ID, Lim JA, Hong JM (2013) Porous polyimide membranes prepared by wet phase inversion for use in low dielectric applications. Int J Mol Sci 14:8698–8707

    Article  Google Scholar 

  54. Touitou E, Barry BW (2006) Enhancement in drug delivery. CRC, Boca Raton

    Book  Google Scholar 

  55. Minisini S (2009) Mathematical and numerical modeling of controlled drug release. Doctoral dissertation, Ph.D thesis, Politecnico di Milano

  56. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  Google Scholar 

  57. Deng F, Dong C, Liu Y (2012) Characterization of the interaction between nitrofurazone and human serum albumin by spectroscopic and molecular modeling methods. Mol BioSyst 8:1446–1451

    Article  CAS  Google Scholar 

  58. Mongia NK, Anseth KS, Peppas NA (1996) Mucoadhesive poly(vinyl alcohol) hydrogels produced by freezing/thawing processes: applications in the development of wound healing systems. J Biomater Sci Polym Ed 7:1055–1064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Navarchian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feiz, S., Navarchian, A.H. & Jazani, O.M. Poly(vinyl alcohol) membranes in wound-dressing application: microstructure, physical properties, and drug release behavior. Iran Polym J 27, 193–205 (2018). https://doi.org/10.1007/s13726-018-0600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0600-2

Keywords

Navigation