Skip to main content
Log in

Regenerated cellulose fibre reinforced casein films: Effect of plasticizer and fibres on the film properties

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The idea of using man-made cellulosic fibres as reinforcement for casein films in this study was inspired by their well defined fibre diameter and availability in large quantity, eventually leading to a homogeneous high quality composite at low cost. The casein biofilms were fabricated by solution casting from an aqueous alkaline solution of the bovine milk protein casein in the presence of glycerol as a plasticizer, and the fibre-reinforced biocomposites were prepared by the addition of regenerated cellulose fibre to the casein casting solution with various amounts of glycerol. The effects of glycerol content and cellulose fibre reinforcements on the mechanical, thermal and physiological properties were characterized. The results showed that increasing glycerol content decreased the film strength, Young’s modulus and thermal stability with a gradual increase in the elongation. However, the tensile properties were noticeably improved when reinforced with cellulose fibre. The composite with 20 wt% glycerol and 20 wt% cellulose fibre showed the maximum tensile strength of 23.5 MPa and Young’s modulus of 1.5 GPa. The corresponding values for the composite with 30 wt% glycerol and the same fibre content were 15.1 MPa and 0.9 GPa, which were 2.3- and 3.2-fold higher compared to 30 wt% glycerol plasticized film. The thermal analysis revealed that the glass transition temperature and the thermal stability were decreased when the glycerol content was increased. Addition of cellulose fibres increased the glass transition temperature as well as the thermal stability. The gel electrophoresis (SDS-PAGE) analysis indicated that there was no significant decrease in the molecular weight of the casein protein during sample preparation. Scanning electron microscopy showed that the obtained composites with low glycerol content had adequate interfacial bonding, and Fourier transform IR spectroscopy confirmed the formation of molecular interactions between the cellulose fibres and the casein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. M. Barreto, A. T. N. Pires, and V. Soldi, Polym. Degrad. Stab., 79, 147 (2003).

    Article  CAS  Google Scholar 

  2. J. M. Krochta and H. Chen, in Protein-Based Films and Coatings, A. Gennadios, Ed., CRC Press LLC, Boca Raton, 2002, pp 1–40, 181–211.

  3. Q. Dong and Y. L. Hsieh, J. Appl. Polym. Sci., 77, 2543 (2000).

    Article  CAS  Google Scholar 

  4. P. Müller-Buschbaum, R. Gebhardt, E. Maurer, E. Bauer, R. Gehrke, and W. Doster, Biomacromolecules, 7, 1773 (2006).

    Article  Google Scholar 

  5. T. H. McHugh and J. M. Krochta, Food Technol., 48, 97 (1994).

    CAS  Google Scholar 

  6. M. Tanaka, K. Iwata, R. Sanguandeekul, A. Handa, and S. Ishizaki, Fish. Sci., 67, 346 (2001).

    Article  CAS  Google Scholar 

  7. J. R. Barone, J. Polym. Environ., 17, 143 (2009).

    Article  CAS  Google Scholar 

  8. M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, Eur. Polym. J., 47, 254 (2011).

    Article  CAS  Google Scholar 

  9. J. R. Barone and W. F. Schmidt, Compos. Sci. Technol., 65, 173 (2005).

    Article  CAS  Google Scholar 

  10. P. M. Tomasula, N. Parris, W. Yee, and D. Coffin, J. Agric. Food Chem., 46, 4470 (1998).

    Article  CAS  Google Scholar 

  11. J. W. Rhim, K. A. Mohanty, S. P. Singh, and P. K. W. Ng, Ind. Eng. Chem. Res., 45, 3059 (2006).

    Article  CAS  Google Scholar 

  12. T. Grega, D. Najgebauer, M. Sady, M. Baczkowicz, P. Tomasik, and M. Faryna, J. Polym. Environ., 11, 75 (2003).

    Article  CAS  Google Scholar 

  13. C. Vaz, M. Fossen, R. van Tuil, L. de Graaf, R. Reis, and A. Cunha, J. Biomed. Mater. Res. A, 65, 60 (2003).

    Article  CAS  Google Scholar 

  14. N. Wang, L. Zhang, Y. Lu, and Y. Du, J. Appl. Polym. Sci., 91, 332 (2004).

    Article  CAS  Google Scholar 

  15. A. Ghosh, M. A. Ali, and G. J. Dias, Biomacromolecules, 10, 1681 (2009).

    Article  CAS  Google Scholar 

  16. S. S. Sohail, B. Wang, M. A. S. Biswas, and J. H. Oh, J. Food Sci., 71, C255 (2006).

    Article  Google Scholar 

  17. Y. Lu, L. Weng, and X. Cao, Carbohydr. Polym., 63, 198 (2006).

    Article  CAS  Google Scholar 

  18. T. Nishino, I. Matsuda, and K. Hirao, Macromolecules, 37, 7683 (2004).

    Article  CAS  Google Scholar 

  19. J.-L. Audic, B. Chaufer, and G. Daufin, Lait, 83, 417 (2003).

    Article  CAS  Google Scholar 

  20. S. Park, D. Bae, and K. Rhee, J. Am. Oil Chem. Soc., 77, 879 (2000).

    Article  CAS  Google Scholar 

  21. T. Considine, H. Patel, S. Anema, H. Singh, and L. Creamer, Innov. Food Sci. Emerg., 8, 1 (2007).

    Article  CAS  Google Scholar 

  22. M. Rahman and C. S. Brazel, Prog. Polym. Sci., 29, 1223 (2004).

    Article  CAS  Google Scholar 

  23. G. Chen and H. Liu, J. Appl. Polym. Sci., 110, 641 (2008).

    Article  CAS  Google Scholar 

  24. A. Mizuno, M. Mitsuiki, and M. Motoki, J. Food Sci., 64, 796 (1999).

    Article  CAS  Google Scholar 

  25. A. Patrucco, A. Aluigi, C. Vineis, and C. Tonin, J. Biobased Mater. Bio., 5, 124 (2011).

    Article  CAS  Google Scholar 

  26. I. Olabarrieta, S.-W. Cho, M. Gällstedt, J. R. Sarasua, E. Johansson, and M. S. Hedenqvist, Biomacromolecules, 7, 1657 (2006).

    Article  CAS  Google Scholar 

  27. L. J. Mauer, D. E. Smith, and T. P. Labuza, Int. Dairy J., 10, 353 (2000).

    Article  CAS  Google Scholar 

  28. P. Lodha and A. N. Netravali, Ind. Crop. Prod., 21, 49 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Skrifvars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SW., Skrifvars, M., Hemanathan, K. et al. Regenerated cellulose fibre reinforced casein films: Effect of plasticizer and fibres on the film properties. Macromol. Res. 22, 701–709 (2014). https://doi.org/10.1007/s13233-014-2091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2091-0

Keywords

Navigation