Skip to main content
Log in

Effect of surface modified montmorillonite on photo-oxidative degradation of silicone rubber composites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Basal spacing of montmorillonite (MMT) was improved through a column chromatography technique using quaternary long chain ammonium salt as an intercalent. An increase in d-spacing of organic montmorillonite (OMMT) was confirmed by XRD and found to increase from 16 to 22 Å. The d-spacing was maximum (22 Å) due to an ion exchange column of sufficient length (35 cm) and diameter (5 cm), which provides maximum retention time for the proper exchange of ions between plates of MMT and ion exchange resin packed into the column. Nanocomposites (OMMT: silicone rubber) were prepared using a solution blending method. The material was compounded on a two roll mill and molded in a compression molding machine in order to obtain a square (0.2 mm thickness) sheet. Photo-oxidative degradation of OMMT: silicone rubber composite was studied under accelerated UV irradiation (≥290 nm) at different time intervals. Prolonged exposure to UV leads to a progressive decrease in mechanical and physical properties along with the change in behavior of the filler-matrix interaction, which was due to decrease in cross-linkage density with an increase in the mobility of rubber chains. The increase in carbonyl (>CO), hydroxyl (-OH) functional groups on irradiation of OMMT: silicone rubber composites at different time intervals were studied using Fourier transform-infrared spectroscopy (FTIR). Whereas, change in morphological behavior regarding the OMMT-matrix interaction on irradiation was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Overall, the study showed that the OMMT: silicone composites were affected more on irradiation than pristine silicone composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Kim, A. Blumstein, J. Kumar, and S. K. K. Tripathy, Chem. Mater., 13, 243 (2001).

    Article  CAS  Google Scholar 

  2. M. Biswas and S. SinhaRay, Polym., 39, 6423 (1998).

    Article  CAS  Google Scholar 

  3. E. P. Giannelis, R. Krishnamoorti, and E. Manias, Adv. Polym. Sci., 138, 108 (1999).

    Google Scholar 

  4. I. Dékány, L. Turi, and Z. Király, Appl. Clay. Sci., 15(1–2), 221 (1999).

    Article  Google Scholar 

  5. B. Fayolle, L. Audouin, and J. Verdu, Polym. Degrad. Stab., 92, 231 (2007).

    Article  CAS  Google Scholar 

  6. K. D. Min, W. H. Park, J. H. Youk, and Y. J. Kwak, Macromol. Res., 16, 626 (2008).

    Article  CAS  Google Scholar 

  7. N. G. Shimpi and S. Mishra, J. Sci. Indust. Res., 64, 745 (2005).

    Google Scholar 

  8. S. Mishra, N. G. Shimpi, and U. D. Patil, J. Polym. Res., 14, 449 (2007).

    Article  CAS  Google Scholar 

  9. S. Mishra, N. G. Shimpi, and A. D. Mali, Macromal. Res., 20, 181 (2012)

    Article  Google Scholar 

  10. N. G. Shimpi and S. Mishra, J. Appl. Polym. Sci., 98, 2563 (2005).

    Article  Google Scholar 

  11. S. Mishra and N. G. Shimpi, J. Appl. Polym. Sci., 104, 2018 (2007).

    Article  CAS  Google Scholar 

  12. S. Mishra and N. G. Shimpi., J Nanotech and Its Appl., 1, 18 (2006).

    Google Scholar 

  13. A. Tidjani and C. A. Wilkie, Polym. Degrad. Stab., 74, 33 (2001).

    Article  CAS  Google Scholar 

  14. K. Jeong, W. Lee, J. Cha, C. R. Park, Y. W. Cho, and I. C. Kwon, Macromol. Res., 16, 57 (2008).

    Article  CAS  Google Scholar 

  15. K. M. Park, J. K. Jung, K. D. Park, S. Y. Lee, and M. C. Lee, Macromol. Res., 16, 517 (2008).

    Article  CAS  Google Scholar 

  16. H. Jung, M. K. Jang, J. W. Nah, and Y. B. Kim, Macromol. Res., 17, 265 (2009).

    Article  CAS  Google Scholar 

  17. J. C. M. Suarez and E. Biasotto, Polym. Degrad. Stab., 72, 217 (2001).

    Article  CAS  Google Scholar 

  18. H. Qin, C. Zhao, S. Zhang, G. Chen, and M. Yang, Polym. Degrad. Stab., 81, 497 (2003).

    Article  CAS  Google Scholar 

  19. P. C. LeBaron, T. J. Pinnavaia, and Z. Wang, Appl. Clay. Sci., 15, 11 (1999).

    Article  CAS  Google Scholar 

  20. B. Mailhot, S. Morlat, J.-L. Gardette, S. Boucard, J. Duchet, and J.-F. Gérard, Polym. Degrad. Stab., 82, 163 (2003).

    Article  CAS  Google Scholar 

  21. J. Liu, X. Li, S. Zuo, and Y. Yu, Appl. Clay. Sci., 37, 275 (2007).

    Article  CAS  Google Scholar 

  22. S. Morlat-Therias, B. Mailhot, J-L. Gardette, C. Da Silva, B. Haidar, and A. Vidal, Polym. Degrad. Stab., 90, 78 (2005).

    Article  CAS  Google Scholar 

  23. V. K. Rana, O. S. Kushwaha, R. P. Singh, S. Mishra, and Chang-Sik Ha, Macromol. Res., 18, 845 (2010).

    Article  CAS  Google Scholar 

  24. N. G. Shimpi and S. Mishra, 526/MUM/2009 dated March 6 (Patent), (2009).

  25. S. Mishra, S. S. Sonawane, and N. G. Shimpi, Appl. Clay. Sci., 46, 222 (2009).

    Article  CAS  Google Scholar 

  26. T. H. Kim, K. Kim, and G. H. Park, Macromol. Res., 17, 770, (2009).

    Article  CAS  Google Scholar 

  27. I. C. Um, T. H. Kim, H. Y. Kweon, C. S. Ki, and Y. H. Park, Macromol. Res., 17, 785 (2009).

    Article  CAS  Google Scholar 

  28. F. D. Jestin, J. Locoste, N. B. Oudin, C. Cardinet, and J. Lemaire, Polym. Degrad. Stab., 67, 469 (2000).

    Article  Google Scholar 

  29. László Körösi, József Németh, and Imre Dékány, Appl. Clay. Sci., 27, 29 (2004).

    Article  Google Scholar 

  30. R. Kun, K. Mogyorósi, and I. Dékány, Appl Clay Sci., 32, 99 (2006).

    Article  CAS  Google Scholar 

  31. T. Agag, T. Koga, and T. Takeichi, Polym, 42, 3399 (2001).

    Article  CAS  Google Scholar 

  32. R. Magaraphan, W. Lilayuthalert, A. S. Johannes, and W. Schwank, Compos. Sci. Technol., 61, 1253 (2001).

    Article  CAS  Google Scholar 

  33. S. I. Jeong, Y. M. Lee, and H. Shin, Macromol. Res., 16, 567 (2008).

    Article  CAS  Google Scholar 

  34. V. K. Rana, A. K. Pandey, R. P. Singh, B. Kumar, S. Mishra, and C.-S. Ha, Macromol. Res., 18, 713 (2010).

    Article  CAS  Google Scholar 

  35. J. W. Gilman, Appl. Clay. Sci., 15, 31 (1999).

    Article  CAS  Google Scholar 

  36. Y. Kojima, A. Fujushima, A. Usuki, A. Okada, and T. Kurauchi, Mater. Sci. Lett., 12, 889 (1993).

    Article  CAS  Google Scholar 

  37. M. Tortora, G. Gorrasi, V. Vittoria, G. Gallib, S. Ritrovati, and E. Chiellinim, Polym., 43, 6147 (2002).

    Article  CAS  Google Scholar 

  38. G. Gutiérrez, B. Fayolle, G. Régnier, and J. Medina, Polym Degrad. Stab, 95, 1708 (2010).

    Article  Google Scholar 

  39. N. Khelidj, X. Colin, L. Audouin, J. Verdu, C. Monchy-Leroy, and V. Prunier, Polym. Degrad. Stab., 91, 1598 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Shimpi, N.G. & Mali, A.D. Effect of surface modified montmorillonite on photo-oxidative degradation of silicone rubber composites. Macromol. Res. 21, 466–473 (2013). https://doi.org/10.1007/s13233-013-1035-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1035-4

Keywords

Navigation