Skip to main content
Log in

Identification of fungal fossils and novel azaphilone pigments in ancient carbonised specimens of Hypoxylon fragiforme from forest soils of Châtillon-sur-Seine (Burgundy)

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Fungal stromata were recently discovered in association with charcoal and burnt soil aggregates during an archaeological survey in the Châtillon-sur-Seine forest massif. The wood and soil in the samples were dated to the medieval period (between 738 and 1411 AD). Light microscopy and scanning electron microscopy revealed that a few of the stromatal fragments still contained ascospores. Their macromorphological characters were described and secondary metabolite profiles were generated using high performance liquid chromatography with diode array and mass spectrometric detection (HPLC–DAD/MS). The combination of these two data lines then allowed species identification. Most of the fragments were assigned to Hypoxylon fragiforme, the type species of the Hypoxylaceae (Xylariales). Two further species whose stromata grew on the fossil charcoal could be tentatively identified as Jackrogersella cohaerens and (more tentatively) as Hypoxylon vogesiacum. These three species are still commonly encountered in the forests of Central Europe today. Furthermore, the HPLC-HRMS data of H. fragiforme suggested the presence of unknown azaphilone dimers and of further new pigments. These archaeological compounds were compared to fresh stromata of H. fragiforme collected in Germany and subjected to the same analytical protocol. While the major components in both samples were identified as the known mitorubrin type azaphilones and orsellinic acid, the chemical structures of seven novel complex azaphilone pigments, for which we propose the trivial names rutilins C-D and fragirubrins A-E, were elucidated using spectral methods (NMR and CD spectroscopy, high resolution mass spectrometry). It appears that these pigments had indeed persisted for millennia in the fossil stromata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bitzer J, Köpcke B, Stadler M, Hellwig V, Ju YM, Seip S, Henkel T (2007) Accelerated dereplication of natural products, supported by reference libraries. Chimia 51:332–338

    Article  Google Scholar 

  • Chapela IH, Petrini O, Bielser G (1993) The physiology of ascospore eclosion in Hypoxylon fragiforme: mechanisms in the early recognition and establishment of an endophytic symbiosis. Mycol Res 97:157–162

    Article  Google Scholar 

  • Clark RC, Lee SY, Boger DL (2008) Total synthesis of chlorofusin, its seven chromophore diastereomers, and key partial structures. J Am Chem Soc 130:12355–12369

    Article  CAS  Google Scholar 

  • Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, McKenzie EHC, Jayasiri SC, Tibpromma S, Bhat JD, Liu X, Stadler M (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165

    Article  Google Scholar 

  • Divakar PK, Crespo A, Kraichak E, Leavitt SD, Singh G, Schmitt I, Lumbsch HT (2017) Using a temporal phylogenetic method to harmonize family-and genus-level classification in the largest clade of lichen-forming fungi. Fungal Divers 84:101–117

    Article  Google Scholar 

  • Fournier J, Köpcke B, Stadler M (2010) New species of Hypoxylon from western Europe and Ethiopia. Mycotaxon 113:209–235

    Article  Google Scholar 

  • Gao J-M, Yang S-X, Qin J-C (2013) Azaphilones: chemistry and Biology. Chem Rev 113:4755–4811

    Article  CAS  Google Scholar 

  • Hashimoto T, Asakawa Y (1998) Biologically active substances of Japanese inedible mushrooms. Heterocycles 2(47):1067–1110

    Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep. https://doi.org/10.1039/c8np00010g

    Article  PubMed  Google Scholar 

  • Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Hypoxylon as inferred from analytical HPLC profiling. Mycol Progr 4:39–54

    Article  Google Scholar 

  • Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Article  Google Scholar 

  • Hoye TR, Jeffrey CS, Shao F (2007) Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat Protoc 2:2451–2458

    Article  CAS  Google Scholar 

  • Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harbor Perspect Biol 6(1):a016121

    Article  Google Scholar 

  • Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJ, Stadler M (2014a) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 64:181–203

    Article  Google Scholar 

  • Kuhnert E, Heitkämper S, Fournier J, Surup F, Stadler M (2014b) Hypoxyvermelhotins A–C, new pigments from Hypoxylon lechatii sp. nov. Fungal Biol 118:242–252

    Article  CAS  Google Scholar 

  • Kuhnert E, Surup F, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Stadler M (2014c) Lenormandins A-G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonimic data. Fungal Divers 71:165–184. https://doi.org/10.1007/s13225-014-0318-1

    Article  Google Scholar 

  • Kuhnert E, Surup F, Herrmann J, Huch V, Müller R, Stadler M (2015) Rickenyls A–E, antioxidative terphenyls from the fungus Hypoxylon rickii (Xylariaceae, Ascomycota). Phytochemistry 118:68–73

    Article  CAS  Google Scholar 

  • Kuhnert E, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Rohde M, Stadler M (2017) Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers 85:1–43

    Article  Google Scholar 

  • Provost M (2009) Carte archéologique de la Gaule, 21, La Côte-d’Or. Vol. 3, De Nuits-Saint-Georges à Voulaines-les-Templiers. Paris, France : Académie des inscriptions et belles-lettres: Ministère de l’éducation nationale : Ministère de la recherche

  • Quang DN, Hashimoto T, Stadler M, Asakawa Y (2005a) Dimeric azaphilones from the xylariaceous ascomycete Hypoxylon rutilum. Tetrahedron 61:8451–8455

    Article  CAS  Google Scholar 

  • Quang DN, Hashimoto T, Nomura Y, Wollweber H, Hellwig V, Fournier J, Stadler M, Asakawa Y (2005b) Cohaerins A and B, azaphilones from the fungus Hypoxylon cohaerens, and comparison of HPLC-based metabolite profiles in Hypoxylon sect. Annulata. Phytochemistry 66:797–809

    Article  CAS  Google Scholar 

  • Quang DN, Stadler M, Fournier J, Tomita A, Hashimoto T (2006) Cohaerins C–F, four azaphilones from the xylariaceous fungus Annulohypoxylon cohaerens. Tetrahedron 62:6349–6354

    Article  CAS  Google Scholar 

  • Sir EB, Kuhnert E, Lambert C, Hladki AI, Romero AI, Stadler M (2016) New species and reports of Hypoxylon from Argentina recognized by a polyphasic approach. Mycol Progr 15:42

    Article  Google Scholar 

  • Stadler M (2011) Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr Res Envion Appl Mycol 1:75–133

    Article  Google Scholar 

  • Stadler M, Fournier J (2006) Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). Rev Iberoam Micol 23:160–170

    Article  Google Scholar 

  • Stadler M, Quang DN, Tomita A, Hashimoto T, Asakawa Y (2006) Production of bioactive metabolites during stromatal ontogeny of Hypoxylon fragiforme. Mycol Res 110:811–820

    Article  CAS  Google Scholar 

  • Stadler M, Fournier J, Beltrán-Tejera E, Granmo A (2008a) The “red Hypoxylons” of the temperate and subtropical Northern Hemisphere. In “A Festschrift in honor of Professor Jack D. Rogers (Glawe DA, Ammirati JF, eds.). N Am Fungi 3:73–125

    Article  Google Scholar 

  • Stadler M, Fournier J, Læssøe T, Lechat C, Tichy HV, Piepenbring M (2008b) Recognition of hypoxyloid and xylarioid Entonaema species from a comparison of holomorphic morphology, HPLC profiles, and ribosomal DNA sequences. Mycol Progr 7:53–73

    Article  Google Scholar 

  • Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy HV, Peršoh D (2014) A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 77:1–143

    Article  Google Scholar 

  • Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G-K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C-K. Phytochemistry 95:252–258

    Article  CAS  Google Scholar 

  • Surup F, Kuhnert E, Lehmann E, Heitkämper S, Hyde KD, Fournier J, Stadler M (2014) Sporothriolide derivatives as chemotaxonomic markers for Hypoxylon monticulosum. Mycol Int J Fungal Biol 5:110–119

    Article  CAS  Google Scholar 

  • Surup F, Kuhnert E, Böhm A, Pendzialek T, Solga D, Wiebach V, Engler H, Berkessel A, Stadler M, Kalesse M (2018) The rickiols, 20-, 22-, and 24-membered macrolides from the ascomycete Hypoxylon rickii. Chem Eur J 24:2200–2213

    Article  CAS  Google Scholar 

  • Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multi-gene genealogy of the Xylariales. Mycol Prog 17:115–154

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. D. L. Hawksworth for establishing contact between the working groups in France and Germany. AN is indebted for a grant of the Iranian government for a research stay in Germany. LW is grateful for a PhD grant from the province government of Lower Saxony (HSBDR graduate school). KB and MS are grateful for a grant from the Deutsche Forschungsgemeinschaft (DFG) in the Priority Programme “Taxon-Omics: New Approaches for Discovering and Naming Biodiversity” (SPP 1991). Christel Kakoschke, Cäcilia Schwager, Aileen Gollasch, Anke Skiba and Vanessa Stiller are thanked for expert technical assistance. We are grateful to Annelise Binois for her helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Stadler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surup, F., Narmani, A., Wendt, L. et al. Identification of fungal fossils and novel azaphilone pigments in ancient carbonised specimens of Hypoxylon fragiforme from forest soils of Châtillon-sur-Seine (Burgundy). Fungal Diversity 92, 345–356 (2018). https://doi.org/10.1007/s13225-018-0412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-018-0412-x

Keywords

Navigation