Skip to main content
Log in

Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Caffeine is an important naturally occurring compound that can be degraded by bacteria. Excessive caffeine consumption is known to have some adverse effects. We isolated a new bacterium from agriculture soil. The bacterium was tested for its ability to utilise caffeine as the sole carbon and nitrogen source. The isolate was Gram-negative and was identified as Leifsonia sp. strain SIU based on 16S rRNA gene sequencing. It showed 97.16 % of 0.3 g/L caffeine degradation in 48 h when caffeine was used as a sole carbon and nitrogen source. The bacterial growth and degradation at 0.3 g/L caffeine concentration occurred optimally, using 5 g/L sucrose, 0.4 g/L ammonium chloride, at a temperature between 25 and 30 °C and pH of 6.0–7.0. The Luong model best describes the kinetics of the strain growth. The values for the maximum specific growth rate (μ max ), the Monod half saturation constant (K S ), the maximum substrate inhibitory concentration and n are 0.049 h−1, 0.0021 mg/L, 25.0 g/L and 1.562, respectively. These bacterial features make it an ultimate means for caffeine bioremediation. This is the first report of caffeine degradation by Leifsonia sp. strain SIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal R, Mahanty B, Dasu VV (2009) Modeling growth of Cellulomonas cellulans NRRL B 4567 under substrate inhibition during cellulase production. Chem Biochem Eng Q 23:213–218

    CAS  Google Scholar 

  • Aiba S, Shoda M, Nagalani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10:845–864

    Article  CAS  Google Scholar 

  • Alden L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asano Y, Komeda T, Yamada H (1993) Microbial production of theobromine from caffeine. Biosci Biotechnol Biochem 57:1286–1289

    Article  CAS  Google Scholar 

  • Asano Y, Komeda T, Yamada H (1994) Enzymes involved in theobromine production from caffeine by a Pseudomonas putida no. 352. Biosci Biotechnol Biochem 58:2303–2304

    Article  CAS  Google Scholar 

  • Ashihara H, Crozier A (2001) Caffeine, a well known but little mentioned compound in plant science. Trends Plant Sci 6:407–413

    Article  PubMed  CAS  Google Scholar 

  • Babu VRS, Patra S, Thakur MS, Karanth NG, Varadaraj MC (2005) Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme Microb Technol 37:617–624

    Article  CAS  Google Scholar 

  • Bailey RA, Bechet GR (1997) Further evidence of the effects of ratoon stunting disease on production under irrigated and rainfed conditions. Proc S Afr Sugar Technol Assoc 71:97–101

    Google Scholar 

  • Batish DR, Singh HP, Kaur M, Kohli RK, Yadav SS, Kaohli RK (2008) Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiol Plant 30:401–405

    Article  CAS  Google Scholar 

  • Brumbley SM, Petrasovits LA, Hermann SR, Young AJ, Crof BJ (2006) Recent advances in the molecular biology of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease. Aust Plant Path 35:681–689

    Article  CAS  Google Scholar 

  • Cappucino JG, Sherman N (2005) Microbiology: A Loboratory Manual 7th Edition. Pearson Education, Inc, San Francisco, pp 45–47

    Google Scholar 

  • Devereux R, Wilkinson SS (2004) Amplification of ribosomal RNA sequences. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular Microbial Ecology Manual, 2nd edn. Kluwer Academic, Dodrecht, pp 1–17

    Google Scholar 

  • Dlugosz L, Belanger K, Hellenbrand K, Holford TR, Leaderer B, Bracken MB (1996) Maternal caffeine consumption and spontaneous abortion: a prospective cohort study. Epidemiology 7:250–255

    Article  PubMed  CAS  Google Scholar 

  • El-Mched F, Olama Z, Holail H (2013) Optimization of the environmental and physiological factors affecting microbial caffeine degradation and its application in caffeinated products. Basic Res J Microbiol 1:17–27

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fenster L, Eskenazi B, Windham GC, Swan SH (1991) Caffeine consumption during pregnancy and fetal growth. Am J Public Heal 81:458–461

    Article  CAS  Google Scholar 

  • Friedman J, Waller GR (1983a) Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.). J Chem Ecol 9:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Friedman J, Waller GR (1983b) Seeds as allelopathic agents. J Chem Ecol 9:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Frischknecht PM, Ulmer DJ, Baumann TW (1986) Purine alkaloid formation in buds and developing leaflets of Coffea arabica: expression of an optimal defense strategy. Phytochemistry 25:613–616

    Article  CAS  Google Scholar 

  • Gibson AM, Morgan RM, Nikitin AG (2009) The effect of caffeine on the bacterial populations in a freshwater aquarium system. Student Summer Scholars. Paper 31

  • Gokulakrishnan S, Gummadi SN (2006) Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182. Process Biochem 41:1417–1421

    Article  CAS  Google Scholar 

  • Gokulakrishnan S, Chandraraj K, Gummadi SN (2005) Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb Technol 37:225–232

    Article  CAS  Google Scholar 

  • Gokulakrishnan S, Chandraraj K, Gummadi SN (2007) A preliminary study of caffeine degradation by Pseudomonas sp. GSC 1182. Int J Food Microbiol 113:346–350

    Article  PubMed  CAS  Google Scholar 

  • Green PJ, Suls J (1996) The effects of caffeine on ambulatory blood pressure, heart rate, and mood in coffee drinkers. J Behav Med 19:111–128

    Article  PubMed  CAS  Google Scholar 

  • Gummadi SN, Ganesh KB, Devarai S (2009) Enhanced degradation of caffeine by immobilized cells of Pseudomonas sp. in agar–agar matrix using statistical approach. Biochem Eng J 44:136–141

    Article  CAS  Google Scholar 

  • Gummadi SN, Bhavya B, Ashok N (2012) Physiology, biochemistry and possible applications of microbial caffeine degradation. Appl Microbiol 93:545–554

    CAS  Google Scholar 

  • Hakil M, Voisinet F, Viniegra-González G, Augur C (1999) Caffeine degradation in solid state fermentation by Aspergillus tamarii: effects of additional nitrogen sources. Process Biochem 35:103–109

    Article  CAS  Google Scholar 

  • Haldane JBS (1930) Enzymes. Longmans, Green, London

    Google Scholar 

  • Infante RC, Fernandez A, Gauthier R, David M, Rivard GE (1993) Fetal loss associated with caffeine intake before and during pregnancy. J Am Med Assoc 270:2940–2943

    Article  Google Scholar 

  • Jukes TH, Cantor CR (1969) “Evolution of protein molecules,”. In: Munro HN (ed) In mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Lakshmi V, Das N (2010) Caffeine degradation by yeasts isolated from caffeine contaminated samples. Int J Sci Nat 1:47–52

    Google Scholar 

  • Lakshmi V, Nilanjana D (2013a) Caffeine degradation by yeasts isolated from caffeine contaminated samples. Int J Eng Sci Technol 1:47–52

    Google Scholar 

  • Lakshmi V, Nilanjana D (2013b) Biodegradation of Caffeine by Trichosporon asahii Isolated from caffeine Contaminated Soil. Int J Eng Sci Technol 1:1–10

    Google Scholar 

  • Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53:82–94

    Article  PubMed  Google Scholar 

  • Luong JHT (1987) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    Article  PubMed  CAS  Google Scholar 

  • Madyastha KM, Sridhar GR (1998) A novel pathway for the metabolism of caffeine by a mixed culture consortium. Biochem Biophys Res Commun 249:178–181

    Article  PubMed  CAS  Google Scholar 

  • Madyastha KM, Sridhar GR, Vadiraja BB, Madhavi YS (1999) Purification and partial characterization of caffeine oxidase—a novel enzyme from a mixed culture consortium. Biochem Biophys Res Commun 263:460–464

    Article  PubMed  CAS  Google Scholar 

  • Mazzafera P (2002) Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agric 59:815–821

    Article  CAS  Google Scholar 

  • Mazzafera P, Olsson O, Sandberg G (1996) Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Article  PubMed  CAS  Google Scholar 

  • Mohanty SK (2013) A. Genetic characterization of the caffeine C-8 oxidation pathway in Pseudomonas sp. CBB1 B. Validation of caffeine dehydrogenase as a suitable enzyme for a rapid caffeine diagnostic test. pp 1–201

  • Mohanty SK, Yu CL, Das S, Louie TM, Gakhar L, Subramanian M (2012) Delineation of the caffeine C-8 oxidation pathway in Pseudomonas sp. strain CBB1 via characterization of a new trimethyl acid monooxygenase and genes involved in trimethyluric acid metabolism. J Bacteriol 194:3872–3882

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mohapatra BR, Harris N, Nordin R, Mazumder A (2006) Purification and characterization of a novel caffeine oxidase from Alcaligenes species. J Biotechnol 125:319–327

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occuring pesticides. Science 226:184–187

    Article  PubMed  CAS  Google Scholar 

  • Nayak S, Harshitha MJ, Maithili SC, Anilkumar HS, Rao CV (2012) Isolation and characterization of caffeine degrading bacteria from coffee pulp. Indian J Biotechnol 11:86–91

    CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Perzborn M, Syldatk C, Rudat J (2013) Enzymatical and microbial degradation of cyclic dipeptides (diketopiperazines). AMB Express 3:51–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roussos S, Hannibal L, Aquiahuatl MA, Hernandes MRT, Marakis S (1994) Caffeine degradation by Penicillium verrucosum in solid state fermentation of coffee pulp: critical effects of additional inorganic and organic nitrogen sources. J Food Sci Technol 31:316–319

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Bacterial cell maintenance. Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor laboratory Press, New York

    Google Scholar 

  • Singh RK, Kumar S, Kumar A (2008) Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J 40:293–303

    Article  CAS  Google Scholar 

  • Smith A (2002) Effects of caffeine on human behavior. Food Chem Toxicol 40:1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Srisuphan W, Bracken MB (1986) Caffeine consumption during pregnancy and association with late spontaneous abortion. Am J Obst Gyne 155:14–20

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • White PA, Rasmussen JB (1998) The genotoxic hazards of domestic wastes in surface waters. Mutat Res 410:223–236

    Article  PubMed  CAS  Google Scholar 

  • Woolfolk CA (1975) Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen. J Bacteriol 123:1088–1106

  • Yu CL, Kale Y, Gopishetty S, Louie TM, Subramanian M (2008) A novel caffeine dehydrogenase in Pseudomonas sp. strain CBB1 oxidizes caffeine to trimethyluric acid. J Bacteriol 190:772–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu CL, Louie TM, Summers R, Kale Y, Gopishetty S, Subramanian M (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191:4624–4632

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aqlima Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S., Shukor, M.Y., Syed, M.A. et al. Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Ann Microbiol 66, 289–298 (2016). https://doi.org/10.1007/s13213-015-1108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1108-z

Keywords

Navigation