Skip to main content

Advertisement

Log in

Microbial Degradation of Caffeine Using Himalayan Psychrotolerant Pseudomonas sp.GBPI_Hb5 (MCC 3295)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Caffeine, a xenobiotic compound, is continuously released into the environment. Fifteen psychrotolerant bacterial strains, isolated from the Indian Himalayan region, were screened for their caffeine degradation capacity. The medium for the growth of bacteria was optimized using Box-Behnken method. Among these bacteria, Pseudomonassp. (GBPI_Hb5), showing the best response, was further used for caffeine degradation in batch mode. The culture medium, having caffeine as a sole source of carbon, was used for analyzing the effect of pH, agitation speed, temperature, inoculum volume, and caffeine concentration on bacterial growth and its caffeine degradation potential. The bacterium GBPI_Hb5 showed approx. 93% caffeine degradation up to 96 h under controlled conditions. The compounds produced during the degradation of caffeine were also studied. The study is likely to have implications in the bioremediation of caffeine from polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C et al (2019) Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ 690:1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052

    Article  CAS  PubMed  Google Scholar 

  2. Sui Q, Huang J, Deng S et al (2010) Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res 44:417–426. https://doi.org/10.1016/j.watres.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  3. Buerge IJ, Poiger T, Müller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700. https://doi.org/10.1021/es020125z

    Article  CAS  PubMed  Google Scholar 

  4. Carballa M, Omil F, Lema JM et al (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926. https://doi.org/10.1016/j.watres.2004.03.029

    Article  CAS  PubMed  Google Scholar 

  5. Gummadi SN, Bhavya B, Ashok N (2012) Physiology, biochemistry and possible applications of microbial caffeine degradation. Appl Microbiol Biotechnol 93:545–554. https://doi.org/10.1007/s00253-011-3737-x

    Article  CAS  PubMed  Google Scholar 

  6. Korekar G, Kumar A, Ugale C (2020) Occurrence, fate, persistence and remediation of caffeine: a review. Environ Sci Pollut Res 27:34715–34733. https://doi.org/10.1007/s11356-019-06998-8

    Article  CAS  Google Scholar 

  7. Erukainure OL, Oyebode OA, Sokhela MK et al (2017) Caffeine—rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity. Biomed Pharmacother 96:1065–1074. https://doi.org/10.1016/j.biopha.2017.11.120

    Article  CAS  PubMed  Google Scholar 

  8. Rah YC, Yoo MH, Choi J et al (2017) In vivo assessment of hair cell damage and developmental toxicity caused by gestational caffeine exposure using zebrafish (Danio rerio) models. Neurotoxicol Teratol 64:1–7. https://doi.org/10.1016/j.ntt.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Fernandes AS, Mello FVC, Thode Filho S et al (2017) Impacts of discarded coffee waste on human and environmental health. Ecotoxicol Environ Saf 141:30–36. https://doi.org/10.1016/j.ecoenv.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Boxall ABA, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229. https://doi.org/10.1016/j.envint.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mazzafera P (2002) Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agric 59:815–821. https://doi.org/10.1590/S0103-90162002000400030

    Article  CAS  Google Scholar 

  12. Qi F, Chu W, Xu B (2014) Modeling the heterogeneous peroxymonosulfate / Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources. Chem Eng J 235:10–18. https://doi.org/10.1016/j.cej.2013.08.113

    Article  CAS  Google Scholar 

  13. Asano Y, Komeda T, Yamada H (1994) Enzymes involved in theobromine production from caffeine by Pseudomonas putida no. 352. Biosci Biotechnol Biochem 58:2303–2304. https://doi.org/10.1271/bbb.58.2303

    Article  CAS  Google Scholar 

  14. Mohapatra BR, Harris N, Nordin R, Mazumder A (2006) Purification and characterization of a novel caffeine oxidase from alcaligenes species. J Biotechnol 125:319–327. https://doi.org/10.1016/j.jbiotec.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  15. Hakil M, Denis S, Viniegra-González G, Augur C (1998) Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enzyme Microb Technol 22:355–359. https://doi.org/10.1016/S0141-0229(97)00205-6

    Article  CAS  Google Scholar 

  16. Dhakar K, Pandey A (2020) Microbial ecology from the himalayan cryosphere perspective. Microorganisms 8:1–17. https://doi.org/10.3390/microorganisms8020257

    Article  Google Scholar 

  17. Pandey A, Jain R, Sharma A et al (2019) 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Appl Sci 1:278. https://doi.org/10.1007/s42452-019-0273-2

    Article  CAS  Google Scholar 

  18. Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100:2499–2510. https://doi.org/10.1007/s00253-016-7285-2

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira SLC, Bruns RE, Ferreira HS et al (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  20. Ceja-navarro JA, Vega FE, Karaoz U et al (2015) In the primary insect pest of coffee. Nat Commun. https://doi.org/10.1038/ncomms8618

    Article  PubMed  Google Scholar 

  21. Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolorization of textile dye direct black 22 by a novel bacterial consortium. Bioresour Technol 99:562–569. https://doi.org/10.1016/j.biortech.2006.12.033

    Article  CAS  PubMed  Google Scholar 

  22. Neysens P, Messens W, De Vuyst L (2003) Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 88:29–39

    Article  CAS  Google Scholar 

  23. Crisler JD, Newville TM, Chen F et al (2012) Bacterial growth at the high concentrations of magnesium sulfate found in martian soils. Astrobiology 12:98–106. https://doi.org/10.1089/ast.2011.0720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao JY, Zhang GJ, Mao ZS et al (2009) Influence of Mg2+ on the growth and activity of sulfate reducing bacteria. Hydrometallurgy 95:127–134. https://doi.org/10.1016/j.hydromet.2008.05.006

    Article  CAS  Google Scholar 

  25. Lakshmi V, Nilanjana D (2013) Caffeine degradation by yeasts isolated from caffeine contaminated samples. Int J Sci Nat 1:47–52

    Google Scholar 

  26. El-Mched F, Olama Z, Holail H (2013) Optimization of the environmental and physiological factors affecting microbial caffeine degradation and its application in caffeinated products. Basic Res J Mcrobiol 1:17–27

    Google Scholar 

  27. Karanth NG, Babu VRS, Patra S et al (2005) Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme Microb Technol 37:617–624. https://doi.org/10.1016/j.enzmictec.2005.03.022

    Article  CAS  Google Scholar 

  28. Gokulakrishnan S, Chandraraj K, Gummadi SN (2007) A preliminary study of caffeine degradation by pseudomonas sp. GSC 1182. Int J Food Microbiol 113:346–350. https://doi.org/10.1016/j.ijfoodmicro.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  29. Madyastha KM, Sridhar GR, Vadiraja BB, Madhavi YS (1999) Purification and partial characterization of caffeine oxidase–a novel enzyme from a mixed culture consortium. Biochem Biophys Res Commun 263:460–464. https://doi.org/10.1006/bbrc.1999.1401

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Han LR, He HW et al (2018) Effects of agitation, aeration and temperature on production of a novel glycoprotein gp-1 by streptomyces kanasenisi zx01 and scale-up based on volumetric oxygen transfer coefficient. Molecules 23:1–14. https://doi.org/10.3390/molecules23010125

    Article  CAS  Google Scholar 

  31. Ramadan MA, el-Tayeb OM, Alexander M (1990) Inoculum size as a factor limiting success of inoculation for biodegradation. Appl Environ Microbiol 56:1392–1396

    Article  CAS  Google Scholar 

  32. Garg SK, Tripathi M, Singh SK, Tiwari JK (2012) International biodeterioration & biodegradation biodecolorization of textile dye ef fl uent by Pseudomonas putida SKG-1 ( MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int Biodeterior Biodegrad 74:24–35. https://doi.org/10.1016/j.ibiod.2012.07.007

    Article  CAS  Google Scholar 

  33. Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187

    Article  CAS  Google Scholar 

  34. Frischknecht PM, Dufek JV, Baumann TW (1986) Purine alkaloid formation in buds and developing leaflets of Cofea arabica. Phytochemistry 5:613–617

    Article  Google Scholar 

  35. Asano Y, Komeda T, Yamada H (2009) Microbial production of theobromine from caffeine. Biosci Biotechnol Biochem 57:1286–1289. https://doi.org/10.1271/bbb.57.1286

    Article  Google Scholar 

  36. Gummadi SN, Ganesh KB, Santhosh D (2009) Enhanced degradation of caffeine by immobilized cells of pseudomonas sp. in agar-agar matrix using statistical approach. Biochem Eng J 44:136–141. https://doi.org/10.1016/j.bej.2008.11.010

    Article  CAS  Google Scholar 

  37. Mazzafera P, Olsson O, Sandberg G (1996) Degradation of caffeine and related methylxanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207. https://doi.org/10.1007/BF00167865

    Article  CAS  PubMed  Google Scholar 

  38. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. https://doi.org/10.1016/j.tibtech.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  39. Summers RM, Mohanty SK, Gopishetty S, Subramanian M (2015) Genetic characterization of caffeine degradation by bacteria and its potential applications. Microb Biotechnol 8:369–378

    Article  CAS  Google Scholar 

  40. Yamaoka-Yano DM, Mazzafera P (1999) Catabolism of caffeine and purification of a xanthine oxidade responsible for methyluric acids production in Pseudomonas putida L. Rev Microbiol 30:62–70. https://doi.org/10.1590/s0001-37141999000100013

    Article  CAS  Google Scholar 

  41. Mazzafera P (2004) Catabolism of caffeine in plants and microorganisms. Front Biosci 9:1348–1359. https://doi.org/10.2741/1339

    Article  CAS  PubMed  Google Scholar 

  42. Yu CL, Louie man T, Summers R et al (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J Bacteriol 191:4624–4632. https://doi.org/10.1128/JB.00409-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Summers RM, Louie TM, Yu CL, Subramanian M (2011) Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology 157:583–592. https://doi.org/10.1099/mic.0.043612-0

    Article  CAS  PubMed  Google Scholar 

  44. Summers RM, Louie TM, Yu CL et al (2012) Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J Bacteriol 194:2041–2049. https://doi.org/10.1128/JB.06637-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu CL, Summers RM, Li Y et al (2015) Rapid identification and quantitative validation of a caffeine-degrading pathway in Pseudomonas sp. CES J Proteome Res 14:95–106. https://doi.org/10.1021/pr500751w

    Article  CAS  PubMed  Google Scholar 

  46. Summers RM, Seffernick JL, Quandt EM, Yu CL, Barrick JESM (2013) C junkie: an unprecedented glutathione s-transferase-dependent oxygenase required for caffeine degradation by P. putida CBB5. J Bacteriol 195:3931–3939. https://doi.org/10.1128/JB.0058-13

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director GBP-NIHE for extending the facilities and Department of Science and Technology-Water Technology Initiative (DST-WTI) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Laboratory work and original draft preparation was done by PT and VA. The conceptualization, formal analysis, funding, acquisition, resources, software, supervision, and review were done by VA. Final editing by VA and AP. Microbial strains are provided by AP.

Corresponding author

Correspondence to Vasudha Agnihotri.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thathola, P., Agnihotri, V. & Pandey, A. Microbial Degradation of Caffeine Using Himalayan Psychrotolerant Pseudomonas sp.GBPI_Hb5 (MCC 3295). Curr Microbiol 78, 3924–3935 (2021). https://doi.org/10.1007/s00284-021-02644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02644-0

Navigation