Skip to main content
Log in

Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Nocardia sp. was isolated from an exotic soil of the northwestern Himalayas and was capable of selectively cleaving the side chain of sterols (cholesterol and phytosterol) yielding androstane steroids, in the presence of a hydrophobic metal chelating agent, after an incubation period of 24 h. Nocardia sp. was identified on the basis of morphological and biochemical characteristics accomplished with 16S rDNA sequencing. An extracellular production of 1,4-androstadiene-3,17-dione (ADD) was observed in the fermentation medium. The conversion studies were carried out with a cholesterol concentration ranging from 0.3 to 3 g/l, but the fermentation conditions in biotransformation experiments gave the maximum yields (theoretical yield was 90 %) at 0.5 g/l cholesterol concentration with pH 7.2 in the presence of Tween 80 concentration 2 g/l; in addition, th effects of the media were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed S, Johri BN (1991) A cholesterol degrading bacteria: isolation, characterization and bioconversion. Ind J Exper Biol 29:76–77

    Google Scholar 

  • Ahmed S, Garg SK, Johri BN (1992) Biotransformation of sterols: selective cleavage of the side chain. Biotech Adv 10:1–67

    Article  Google Scholar 

  • Ahmed S, Roy PK, Basu SK, Johri BN (1993) Cholesterol side chain cleavage by immobilized cells of Rhodococcus equi DSM 89-133. Ind J Exp Biol 31:319–322

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Angelova B, Mutafov S, Avramov T, Dimova I, Boyadjieva L (1996) 9α -hydroxylation of 4-androstene-3, 17-dione by resting Rhodococcus sp. cells. Proc Biochem 31:179–184

    Article  CAS  Google Scholar 

  • Biojournal (2000) Forbes granted patent on microbial conversion (Monday, 19 June).http://www.biojournal.com/start.html.

  • Borrego S, Niubo E, Ancheta O, Espinosa ME (2000) Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy. Tissue cell 32:494–500

    Article  PubMed  CAS  Google Scholar 

  • Cruz A, Fernandes P, Cabral JMS, Pinheiro HM (2001) Whole cell biotransformation of β-sitosterol in aqueous-organic two-phase systems. J Mol Catal B: Enzym 11:579–585

    Article  CAS  Google Scholar 

  • Cruz A, Fernandes P, Cabral JM S, Pinheiro H M (2002) Effect of phase composition on the whole cell bioconversion of β-sitosterol in biphasic medium. J Mol Catal B:Enzy 371-375.

  • Dias ACP, Fernandes P, Cabral JMS, Pinheiro HM (2002) Isolation of biodegradable sterol rich fraction from industrial wastes. Biores Technol 82:253–260

    Article  CAS  Google Scholar 

  • Dogra N, Qazi GN (2001) Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiol 46:17–20

    Article  CAS  Google Scholar 

  • Donova MV, Dovbnya DV, Sukhodolskaya GV, Khomutov SM, Nikolayeva VM, Kwon I, Han K (2005) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80:55–60

    Article  CAS  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32(6):688–705

    Article  CAS  Google Scholar 

  • Goswami PC, Singh HD, Baruah JN (1984) Factors limiting the microbial conversion of sterols to 17-ketosteroids in the presence of metal chelate inhibitors. Folia Microbiol 29:209–216

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley J, Williams ST (1994) Bergeys manual of determinative bacteriology, 9th edn. Williams and Wilkins, Lippincot

    Google Scholar 

  • Khajuria RK, Bhardwaj V, Gupta RK, Sharma P, Somal P, Mehta P, Qazi GN (2007) Development of a rapid normal phase liquid chromatography/ positive ion atmospheric chemical ionization mass spectrometry method for simultaneous detection and quantification of cholesterol, androsta- 1,4-diene-3,17-dione and androst-4-ene-3,17- dione. J Chrom Sci 45(8):519–523

    CAS  Google Scholar 

  • Kieslich K (1985) Microbial side chain degradation of sterol. J Basic Microbiol 25:461–475

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Chen C, Liu WH (1993) Production of androsta-1,4-diene-3,17-dione from cholesterol using two step microbial transformation. Appl Microbiol Biotechnol 38:447–452

    Article  CAS  Google Scholar 

  • Llanes N, Hung B, Falero A, Perez C, Aguila B (1995) Glucose and lactose effect on AD and ADD bioconversion by Mycobacterium sp. Biotechnol Lett 17(11):1237–1240

    Article  CAS  Google Scholar 

  • Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 63:332–345

    Article  Google Scholar 

  • Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Biores Technol 99:6725–6737

    Article  CAS  Google Scholar 

  • Marsheck WJ, Kraychy S, Muir R (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77

    PubMed  CAS  Google Scholar 

  • Mathur S, Bhatia M C, Mathur S N (1992) Biotransforamtion of β- sitosterol into 17-ketosteroids by some strains of Arthrobacter. Role Biotechnol Agric 99-120.

  • Perez C, Llanes N, Hung BR, Falero A, Aguila B, Herve ME, Gnesca M, Marti E (2003a) Conversion of AD to ADD in mixed cultures Mycobacterium–Nocardiodes. Cienc Biol 34(2):86–90

    CAS  Google Scholar 

  • Perez C, Falero A, Llanes N, Hung BR, Herve ME, Palmer A, Marti E (2003b) Resistance to androstanes as an approach for industrial mycobacteria. J Ind Microbiol Biotechnol 30(10):623–626

    Article  PubMed  CAS  Google Scholar 

  • Sallam LAR, El-Refai AM, El-Minofi HA (2005) Biological and biochemical improvement of the enzyme side chain degradation of cholesterol by Fusarium solani. Process Biochem 40:203–206

    Article  CAS  Google Scholar 

  • Smith M, Zahnley J, Pfeifer D, Goff D (1993) Growth and cholesterol oxidation by Mycobacterium sp. in Tween 80 medium. Appl Environ Microbiol 59:1425–1429

    PubMed  CAS  Google Scholar 

  • Sripalakit P, Wichai U, Saraphanchotiwitthaya A (2006) Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid converting microbial strains. J Mol Catal B: Enzym 41:49–54

    Article  CAS  Google Scholar 

  • Szentirmai A (1990) Microbial physiology of side chain degradation of sterols. J Indus Microbiol 6:101–116

    Article  CAS  Google Scholar 

  • Venugopal S K, Naik S, Somal P, Sharma P, Arjuna A, Hassan R-Ul, Khajuria R K, Qazi G N (2008) Production of 17-keto androstene steroids by side chain cleavage of progesterone with Bacillus sphaericus. Biocat Biotransformation 1-8.

  • Wilson MR, Gallimore WA, Reese PB (1999) Steroid transformations with Fusarium oxysporum var.cubense and Colletotrichum musae. Steroids 64:834–843

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, P., Slathia, P.S., Somal, P. et al. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. Ann Microbiol 62, 1651–1659 (2012). https://doi.org/10.1007/s13213-012-0422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0422-y

Keywords

Navigation