Skip to main content
Log in

Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616–19-5 was successfully obtained and exhibited higher SAM production (0.41 g/L vs 1.39 g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616–19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616–19-5 could produce 10.92 ± 0.2 g/L SAM in a 5-L fermenter after 96 h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fontecave, M., Atta, M., & Mulliez, E. (2004). S-adenosylmethionine: Nothing goes to waste. Trends in Biochemical Sciences, 29, 243–249.

    Article  CAS  PubMed  Google Scholar 

  2. Lu, S. C. (2000). S-adenosylmethionine. The International Journal of Biochemistry & Cell Biology, 32, 391–395.

    Article  CAS  Google Scholar 

  3. Papakostas, G. I., Cassiello, C. F., & Iovieno, N. (2012). Folates and S-adenosylmethionine for major depressive disorder. Canadian Journal of Psychiatry, 57, 406–413.

    Article  PubMed  Google Scholar 

  4. Shiozaki, S., Shimizu, S., & Yamada, H. (1986). Production of S-adenosyl-L-methionine by Saccharomyces sake. Journal of Biotechnology, 4, 345–354.

    Article  CAS  Google Scholar 

  5. Zhao, W., Shi, F., Hang, B., Huang, L., Cai, J., & Xu, Z. (2016). The improvement of SAM accumulation by integrating the endogenous methionine adenosyltransferase gene SAM2 in genome of the industrial Saccharomyces cerevisiae strain. Applied Biochemistry and Biotechnology, 178, 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  6. Ren, W., Cai, D., Hu, S., Xia, S., Wang, Z., Tan, T., & Zhang, Q. (2017). S -Adenosyl- l -methionine production by Saccharomyces cerevisiae SAM 0801 using DL-methionine mixture: From laboratory to pilot scale. Process Biochemistry, 62, 48–52.

    Article  CAS  Google Scholar 

  7. Li, G., Li, H., Tan, Y., Hao, N., Yang, X., Chen, K., & Ouyang, P. (2020). Improved S-adenosyl-l-methionine production in Saccharomyces cerevisiae using tofu yellow serofluid. Journal of Biotechnology, 309, 100–106.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, H., Zhu, N., Wang, Y., Gao, X., Song, Y., Zheng, J., Peng, J., & Zhang, X. (2021). Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae. AMB Express, 11, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weng, C., Mi, Z., Li, M., Qin, H., Hu, Z., Liu, Z., Zheng, Y., & Wang, Y. (2022). Improvement of S-adenosyl-L-methionine production in Saccharomyces cerevisiae by atmospheric and room temperature plasma-ultraviolet compound mutagenesis and droplet microfluidic adaptive evolution. 3 Biotech, 12, 223.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, H., Yang, Y., Wang, Z., Dou, J., Wang, H., & Zhou, C. (2016). Elevated intracellular acetyl-CoA availability by acs2 overexpression and mls1 deletion combined with metK1 introduction enhanced SAM accumulation in Saccharomyces cerevisiae. Biochemical Engineering Journal, 107, 26–34.

    Article  CAS  Google Scholar 

  11. Kanai, M., Yasuda, N., Morimoto, T., Yoshida, S., Nishibori, N., Mizunuma, M., Fujii, T., & Iefuji, H. (2019). Breeding of a cordycepin-resistant and adenosine kinase-deficient sake yeast strain that accumulates high levels of S-adenosylmethionine. Bioscience, Biotechnology, and Biochemistry, 83, 1530–1537.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H., Wang, Z., Cai, H., & Zhou, C. (2016). Progress in the microbial production of S-adenosyl-L-methionine. World Journal of Microbiology & Biotechnology, 32, 153.

    Article  CAS  Google Scholar 

  13. Chu, J., Qian, J., Zhuang, Y., Zhang, S., & Li, Y. (2013). Progress in the research of S-adenosyl-L-methionine production. Applied Microbiology and Biotechnology, 97, 41–49.

    Article  CAS  PubMed  Google Scholar 

  14. Shobayashi, M., Mukai, N., Iwashita, K., Hiraga, Y., & Iefuji, H. (2006). A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast. Applied Microbiology and Biotechnology, 69, 704–710.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, S., Shuman, S., & Schwer, B. (2007). Sinefungin resistance of Saccharomyces cerevisiae arising from Sam3 mutations that inactivate the AdoMet transporter or from increased expression of AdoMet synthase plus mRNA cap guanine-N7 methyltransferase. Nucleic Acids Research, 35, 6895–6903.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, C.-W., Walker, M. E., Fedrizzi, B., Gardner, R. C. & Jiranek, V. (2017). Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context. FEMS Yeast Research, 17, fox058.

  17. Choi, K.-M., Kim, S., Kim, S., Lee, H. M., Kaya, A., Chun, B.-H., Lee, Y. K., Park, T.-S., Lee, C.-K., Eyun, S.-I., & Lee, B. C. (2019). Sulfate assimilation regulates hydrogen sulfide production independent of lifespan and reactive oxygen species under methionine restriction condition in yeast. Aging, 11, 4254–4273.

    Article  CAS  PubMed  Google Scholar 

  18. Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 41, S95–S128.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cost, G. J., & Boeke, J. D. (1996). A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast, 12, 939–941.

    Article  CAS  PubMed  Google Scholar 

  20. Venegas, M., Barahona, S., Gonzalez, A. M., Sepulveda, D., Zuniga, G. E., Baeza, M., Cifuentes, V., & Alcaino, J. (2020). Phenotypic analysis of mutants of ergosterol biosynthesis genes (ERG3 and ERG4) in the red yeast Xanthophyllomyces dendrorhous. Frontiers in Microbiology, 11, 1312.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, D., Hu, Z.-C., Ke, X. and Zheng, Y.-G. (2020). Breeding of Gluconobacter oxydans with high PQQ-dependent D-sorbitol dehydrogenase for improvement of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production. Biochemical Engineering Journal, 161, 107642.

  22. Umeyama, T., Okada, S., & Ito, T. (2013). Synthetic gene circuit-mediated monitoring of endogenous metabolites: Identification of GAL11 as a novel multicopy enhancer of s-adenosylmethionine level in yeast. ACS Synthetic Biology, 2, 425–430.

    Article  CAS  PubMed  Google Scholar 

  23. Tarutina, M. G., Dutova, T. A., Yezhova, I. E., Nishiuchi, H., & Sineoky, S. P. (2012). Novel method for screening Saccharomyces cerevisiae mutants with increased sulfur-containing compounds: Color-based selection of colonies using the met30 strain. Journal of Bioscience and Bioengineering, 114, 619–621.

    Article  CAS  PubMed  Google Scholar 

  24. Olson, K. R., & Straub, K. D. (2016). The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology (Bethesda, MD.), 31, 60–72.

    CAS  PubMed  Google Scholar 

  25. Hickman, M. J., Petti, A. A., Ho-Shing, O., Silverman, S. J., McIsaac, R. S., Lee, T. A., & Botstein, D. (2011). Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Molecular Biology of the Cell, 22, 4192–4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thomas, D., & Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61, 503–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, T. A., Jorgensen, P., Bognar, A. L., Peyraud, C., Thomas, D., & Tyers, M. (2010). Dissection of combinatorial control by the Met4 transcriptional complex. Molecular Biology of the Cell, 21, 456–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H., Chai, X., Wang, Y., Liu, J., Zhou, G., Wei, P., Song, Y., & Ma, L. (2022). The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae. Microbial Cell Factories, 21, 174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin, X., Lu, J., Zhang, Y., Wu, X., Qiao, X., Wang, Z., Chu, J., & Qian, J. (2020). Engineering Pichia pastoris to improve S-adenosyl- l-methionine production using systems metabolic strategies. Biotechnology and Bioengineering, 117, 1436–1445.

    Article  CAS  PubMed  Google Scholar 

  30. Kanai, M., Mizunuma, M., Fujii, T., & Iefuji, H. (2017). A genetic method to enhance the accumulation of S-adenosylmethionine in yeast. Applied Microbiology and Biotechnology, 101, 1351–1357.

    Article  CAS  PubMed  Google Scholar 

  31. Lauinger, L., & Kaiser, P. (2021). Sensing and signaling of methionine metabolism. Metabolites, 11(2), 83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lecoq, K., Belloc, I., Desgranges, C., & Daignan-Fornier, B. (2001). Role of adenosine kinase in Saccharomyces cerevisiae: Identification of theADO1 gene and study of the mutant phenotypes. Yeast, 18, 335–342.

    Article  CAS  PubMed  Google Scholar 

  33. Ye, C., Sutter, B. M., Wang, Y., Kuang, Z., & Tu, B. P. (2017). A metabolic function for phospholipid and histone methylation. Molecular Cell, 66, 180-193 e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2022YFC2105400).

Author information

Authors and Affiliations

Authors

Contributions

Yun-Chao Tao: Conceptualization, Investigation, Data curation, Writing—original draft, Writing—review and editing. Zhong-Ce Hu: Funding acquisition, Conceptualization, Methodology, Supervision, Writing review and editing. Jun-Chao Pan, Chui-Mu Zheng: Conceptualization, Investigation, Data curation. Yuan-Shan Wang, Zhi-Qiang Liu, Ya-Ping Xue: Supervision. Yu-Guo Zheng: Validation, Visualization, Supervision, Conceptualization, Methodology.

Corresponding author

Correspondence to Zhi-Qiang Liu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZC., Tao, YC., Pan, JC. et al. Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production. Appl Biochem Biotechnol 196, 1450–1463 (2024). https://doi.org/10.1007/s12010-023-04622-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04622-7

Keywords

Navigation