Skip to main content
Log in

Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

In this work, 4-mercaptophenyl boronic acid (4-MPBA) was self-assembled on the surface of silver nanoparticle-embedded silica-coated graphene oxide (GO@SiO2@Ag NPs@MPBA) to detect glucose by surface enhanced Raman scattering (SERS). The SERS intensity of 4-MPBA on the GO@SiO2@Ag NPs was 2.2-fold greater than that of GO@Ag NPs. Moreover, silica-coated GO exhibited lower background signals compared to GO. The SERS intensity of GO@SiO2@Ag NPs@MPBA peaked at 1 mM 4-MPBA. pH-dependent behavior of 4-MPBA on the GO@SiO2 @Ag NPs was investigated; the highest SERS signal intensity was detected at pH 3. The binding of glucose to 4-MPBA-incorporated GO@SiO2@Ag NPs increased the SERS signals at both 1,072 and 1,588 cm-1. The linear range was estimated from 2 to 20 mM glucose. These results provide insight into detection of glucose and the development of SERS-based biosensors using graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reach, G. & Wilson, G.S. Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes. Anal. Chem. 64, 381A–386A (1992).

    CAS  Google Scholar 

  2. Kim, H. et al. TRAMP Prostate Tumor Growth Is Slowed by Walnut Diets Through Altered IGF-1 Levels, Energy Pathways, and Cholesterol Metabolism. J. Med. Food 17, 1281–1286 (2014).

    Article  CAS  Google Scholar 

  3. Ban, J.O. et al. Antiobesity Effects of a Sulfur Compound Thiacremonone Mediated via Down-regulation of Serum Triglyceride and Glucose Levels and Lipid Accumulation in the Liver of db/db Mice. Phytother. Res. 26, 1265–1271 (2012).

    Article  CAS  Google Scholar 

  4. Shin, K.C. et al. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by beta-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F-2 from gypenoside XVII. Biotechnol. Lett. 36, 1287–1293 (2014).

    Article  CAS  Google Scholar 

  5. Lee, H.J. et al. Production of aglycone protopanaxatriol from ginseng root extract using Dictyoglomus turgidum beta-glycosidase that specifically hydrolyzes the xylose at the C-6 position and the glucose in protopanaxatriol-type ginsenosides. Appl. Microbiol. Biotechnol. 98, 3659–3667 (2014).

    Article  CAS  Google Scholar 

  6. Shin, K.C. & Oh, D.K. Characterization of a novel recombinant beta-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. J. Biotechnol. 172, 30–37 (2014).

    Article  CAS  Google Scholar 

  7. Bae, S. et al. Neutrophil Proteinase 3 Induces Diabetes in a Mouse Model of Glucose Tolerance. Endocr. Res. 37, 35–45 (2012).

    Article  CAS  Google Scholar 

  8. Musto, C.J. & Suslick, K.S. Differential sensing of sugars by colorimetric arrays. Curr. Opin. Chem. Biol. 14, 758–766 (2010).

    Article  CAS  Google Scholar 

  9. Deng, J. et al. Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges. Adv. Mater. 26, 6933–6943 (2014).

    Article  CAS  Google Scholar 

  10. Radhakumary, C. & Sreenivasan, K. Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles. Anal. Chem. 83, 2829–2833 (2011).

    Article  CAS  Google Scholar 

  11. Jiang, Y. et al. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angew. Chem., Int. Ed. 49, 4800–4804 (2010).

    Article  CAS  Google Scholar 

  12. Li, C. et al. Stimuli-Triggered Off/On Switchable Complexation between a Novel Type of Charge-Generation Polymer (CGP) and Gold Nanoparticles for the Sensitive Colorimetric Detection of Hydrogen Peroxide and Glucose. Macromolecules 44, 429–431 (2011).

    Article  CAS  Google Scholar 

  13. Takahashi, S. & Anzai, J.-i. Phenylboronic Acid Monolayer-Modified Electrodes Sensitive to Sugars. Langmuir 21, 5102–5107 (2005).

    Article  CAS  Google Scholar 

  14. Li, J. et al. A sensitive non-enzyme sensing platform for glucose based on boronic acid-diol binding. Sens. Actuators, B 161, 832–837 (2012).

    Article  CAS  Google Scholar 

  15. Gao, P. et al. A glucose-responsive pH-switchable bioelectrocatalytic sensor based on phenylboronic aciddiol specificity. Electrochim. Acta 151, 370–377 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, L. et al. Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the “Abnormal” Aggregation-Induced Photoluminescence Enhancement. Anal. Chem. 86, 4423–4430 (2014).

    Article  CAS  Google Scholar 

  17. Wannajuk, K. et al. Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron 68, 8899–8904 (2012).

    Article  CAS  Google Scholar 

  18. Yan, J. et al. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Med. Res. Rev. 25, 490–520 (2005).

    Article  CAS  Google Scholar 

  19. Sun, X. et al. Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman scattering. RSC Adv. 4, 23382–23388 (2014).

    Article  CAS  Google Scholar 

  20. Li, S. et al. Surface-enhanced Raman scattering behaviour of 4-mercaptophenyl boronic acid on assembled silver nanoparticles. Phys. Chem. Chem. Phys. 17, 17638–17645 (2015).

    Article  CAS  Google Scholar 

  21. Torul, H. et al. Glucose determination based on a two component self-assembled monolayer functionalized surface-enhanced Raman spectroscopy (SERS) probe. Anal. Methods 6, 5097–5104 (2014).

    Article  CAS  Google Scholar 

  22. Gupta, V.K. et al. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J. Colloid Interface Sci. 406, 231–237 (2013).

    Article  CAS  Google Scholar 

  23. Harper, M.M. et al. Recent developments and future directions in SERS for bioanalysis. Phys. Chem. Chem. Phys. 15, 5312–5328 (2013).

    Article  CAS  Google Scholar 

  24. Gong, X. et al. Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem. Commun. 48, 7003–7018 (2012).

    Article  CAS  Google Scholar 

  25. Hahm, E. et al. ß-CD dimer-immobilized Ag assembly embedded silica nanoparticles for sensitive detection of polycyclic aromatic hydrocarbons. Sci. Rep. 6, 26082 (2016).

    Article  CAS  Google Scholar 

  26. Shafer-Peltier, K.E. et al. Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. JACS 125, 588–593 (2003).

    Article  CAS  Google Scholar 

  27. Lyandres, O. et al. Progress Toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor. Diabetes Technol. Ther. 10, 257–265 (2008).

    Article  CAS  Google Scholar 

  28. Bull, S.D. et al. Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly. Acc. Chem. Res. 46, 312–326 (2013).

    Article  CAS  Google Scholar 

  29. Hansen, J.S. et al. Arylboronic acids: A diabetic eye on glucose sensing. Sens. Actuators, B 161, 45–79 (2012).

    Article  CAS  Google Scholar 

  30. Nishiyabu, R. et al. Boronic acid building blocks: tools for sensing and separation. Chem. Commun. 47, 1106–1123 (2011).

    Article  CAS  Google Scholar 

  31. Ye, J. et al. A Boronate Affinity Sandwich Assay: An Appealing Alternative to Immunoassays for the Determination of Glycoproteins. Angew. Chem., Int. Ed. 53, 10386–10389 (2014).

    Article  CAS  Google Scholar 

  32. Ling, X. et al. Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett. 10, 553–561 (2010).

    Article  CAS  Google Scholar 

  33. Xu, W. et al. Graphene: A Platform for Surface-Enhanced Raman Spectroscopy. Small 9, 1206–1224 (2013).

    Article  CAS  Google Scholar 

  34. Yu, X. et al. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 5, 952–958 (2011).

    Article  CAS  Google Scholar 

  35. Gurunathan, S. et al. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene. J. Nanobiotechnol. 12, 16 (2014).

    Article  Google Scholar 

  36. Kumar, S. & Koh, J. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite. Int. J. Biol. Macromol. 70, 559–564 (2014).

    Article  CAS  Google Scholar 

  37. Park, J.S. et al. Mechanism of DNA Adsorption and Desorption on Graphene Oxide. Langmuir 30, 12587–12595 (2014).

    Article  CAS  Google Scholar 

  38. Park, J.S. et al. Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 138, 1745–1749 (2013).

    Article  CAS  Google Scholar 

  39. Ramasamy, M.S. et al. Soluble conducting polymerfunctionalized graphene oxide for air-operable actuator fabrication. J. Mater. Chem. A 2, 4788–4794 (2014).

    Article  CAS  Google Scholar 

  40. Gurunathan, S. et al. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Int. J. Nanomed. 8, 1015–1027 (2013).

    Article  Google Scholar 

  41. Yadav, S.K. et al. Click coupled graphene for fabrication of high-performance polymer nanocomposites. J. Polym. Sci. Pt. B-Polym. Phys. 51, 39–47 (2013).

    Article  CAS  Google Scholar 

  42. Gurunathan, S. et al. Green chemistry approach for the synthesis of biocompatible graphene. Int. J. Nanomed. 8, 2719–2732 (2013).

    Article  Google Scholar 

  43. Gurunathan, S. et al. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloid Surf. B-Biointerfaces 102, 772–777 (2013).

    Article  CAS  Google Scholar 

  44. Gurunathan, S. et al. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloid Surf. B-Biointerfaces 105, 58–66 (2013).

    Article  CAS  Google Scholar 

  45. Gurunathan, S. et al. Humanin: A novel functional molecule for the green synthesis of graphene. Colloid Surf. B-Biointerfaces 111, 376–383 (2013).

    Article  CAS  Google Scholar 

  46. Kim, M.G. et al. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector. Biomaterials 35, 2999–3004 (2014).

    Article  CAS  Google Scholar 

  47. Yun, Y.J. et al. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors. Nanoscale 6, 6511–6514 (2014).

    Article  CAS  Google Scholar 

  48. Liu, X. et al. Functionalizing Metal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection of Aromatic Molecules by Surface-Enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces 3, 2944–2952 (2011).

    Article  CAS  Google Scholar 

  49. Xu, W. et al. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. U. S. A. 109, 9281–9286 (2012).

    Article  CAS  Google Scholar 

  50. Xu, W. et al. Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy. Adv. Mater. 25, 928–933 (2013).

    Article  CAS  Google Scholar 

  51. Kim, Y.-K. et al. Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 4, 6545–6551 (2012).

    Article  CAS  Google Scholar 

  52. Zhang, Z. et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem. Commun. 47, 6440–6442 (2011).

    Article  CAS  Google Scholar 

  53. Lu, G. et al. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2, 1817–1821 (2011).

    Article  CAS  Google Scholar 

  54. Fan, W. et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 6, 4843–4851 (2014).

    Article  CAS  Google Scholar 

  55. Hui, K.S. et al. Green synthesis of dimension-controlled silver nanoparticle-graphene oxide with in situ ultrasonication. Acta Mater. 64, 326–332 (2014).

    Article  CAS  Google Scholar 

  56. Shen, J. et al. Polyelectrolyte-assisted one-step hydrothermal synthesis of Ag-reduced graphene oxide composite and its antibacterial properties. Mater Sci. Eng. C. Mater Biol. Appl. 32, 2042–2047 (2012).

    Article  CAS  Google Scholar 

  57. Zhang, W.L. & Choi, H.J. Silica-Graphene Oxide Hybrid Composite Particles and Their Electroresponsive Characteristics. Langmuir 28, 7055–7062 (2012).

    Article  CAS  Google Scholar 

  58. Verma, S. et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011).

    Article  CAS  Google Scholar 

  59. Su, C.-Y. et al. Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chem. Mater. 21, 5674–5680 (2009).

    Article  CAS  Google Scholar 

  60. Michota, A. & Bukowska, J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 34, 21–25 (2003).

    Article  CAS  Google Scholar 

  61. Wang, F. et al. Surface-Enhanced Raman Scattering Detection of pH with Silica-Encapsulated 4-Mercaptobenzoic Acid-Functionalized Silver Nanoparticles. Anal. Chem. 84, 8013–8019 (2012).

    Article  CAS  Google Scholar 

  62. Zheng, J. et al. Surface-Enhanced Raman Scattering of 4-Aminothiophenol in Assemblies of Nanosized Particles and the Macroscopic Surface of Silver. Langmuir 19, 632–636 (2003).

    Article  CAS  Google Scholar 

  63. Anema, J.R. et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering. Annu. Rev. Anal. Chem. 4, 129–150 (2011).

    Article  CAS  Google Scholar 

  64. Kim, H.-M. et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J. Ind. Eng. Chem. 33, 22–27 (2016).

    Article  CAS  Google Scholar 

  65. Kang, H. et al. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J. Mater. Chem. B 2, 4415–4421 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Hyun Jun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, XH., Shim, S., Kim, TH. et al. Glucose detection using 4-mercaptophenyl boronic acid-incorporated silver nanoparticles-embedded silica-coated graphene oxide as a SERS substrate. BioChip J 11, 46–56 (2017). https://doi.org/10.1007/s13206-016-1107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-1107-6

Keywords

Navigation