Skip to main content
Log in

Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The immobilization of enzymes improves their stability in non-conventional media such as organic solvents. In this work, the effects of solvents (DMSO, methanol, ethanol, and n-propanol) on the endoglucanase Cel9A activity and stability were studied. Then, the enzymes were stabilized by its immobilization on chitosan nanoparticles and also using polyols (sorbitol and glycerol) against organic solvents. The SEM results illustrated that the chitosan nanoparticles had about 40 nm diameter. The results indicated that the organic solvents, especially n-propanol, decreased the activity of the free and immobilized enzymes. The reduced activity of the immobilized enzyme was less than that of the free enzyme. Our studies about the enzymes’ stability showed that the free and immobilized enzymes in hydrophobic solvents (with high log P) had the lowest stability compared to other solvents as we observed the half-life of the free enzyme in n-propanol solvent was 2.84 min, and the half-life of the immobilized enzyme was 4.98 min in n-propanol and ethanol solvents 4.50 min. Analysis of the combinatory effects of polyols (sorbitol and glycerol) and the solvents on the stability revealed that sorbitol and glycerol had the most stabilizing effect on the free enzyme in hydrophilic (DMSO) and hydrophobic (n-propanol) solvents, respectively. However, the stabilizing effects of polyols in the immobilized enzyme were independent of the solvents’ hydrophobicity (or log P) due to the hydrophilic properties of chitosan nanoparticles. Therefore, one can conclude that the physiochemical properties of nanoparticles (such as hydrophilicity) influence the stabilizing effects of polyols on immobilized enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AaCel9A:

Endoglucanase Cel9A from Alicyclobacillus acidocaldarius

ChNPs:

Chitosan nanoparticles

DMSO:

Dimethyl sulfoxide

DNS:

Dinitrosalcylic acid

CMC:

Carboxymethyl cellulose

TPP:

Tripolyphosphate

SEM:

Scanning electron microscopy

References

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523

    Article  CAS  PubMed  Google Scholar 

  • Asghari SM, Khajeh K, Dalfard AB, Pazhang M, Karbalaei-Heidari HR (2011) Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium. BMB Rep 44(10):665–668

    Article  CAS  PubMed  Google Scholar 

  • Badoei-Dalfard A, Khajeh K, Asghari SM, Ranjbar B, Karbalaei-Heidari HR (2010) Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J Biochem 148(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Shoham Y, Lamed R (2006) Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2:578–617

    Article  Google Scholar 

  • Beguin P (1990) Molecular biology of cellulose degradation. Annu Rev Microbiol 44(1):219–248

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang Q, Dang Y, Shu G (2013) The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead. Adv J Food Sci Technol 5(7):932–935

    Article  CAS  Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  PubMed  Google Scholar 

  • Dong Y, Ng WK, Shen S, Kim S, Tan RB (2013) Scalable ionic gelation synthesis of ChNPs for drug delivery in static mixers. Carbohydr Polym 94(2):940–945

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Wang K, Chen Y, Li W, Ye Y, Jin S (2017) Construction and characterization of a chitosan-immobilized-enzyme and β-cyclodextrin-included-ferrocene-based electrochemical biosensor for H2O2 detection. Materials 10(8):868–882

    Article  PubMed Central  CAS  Google Scholar 

  • Eckert K, Zielinski F, Leggio LL, Schneider E (2002) Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbiol Biotechnol 60(4):428–436

    Article  CAS  PubMed  Google Scholar 

  • Eckert K, Vigouroux A, Leggio LL, Moréra S (2009) Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong − 1 and − 2 subsites mimic cellobiohydrolase activity. J Mol Biol 394(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Griebenow K, Klibanov AM (1996) On protein denaturation in aqueous–organic mixtures but not in pure organic solvents. J Am Chem Soc 118(47):11695–11700

    Article  CAS  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10(2):122–126

    Article  CAS  PubMed  Google Scholar 

  • Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong SM, Sung HS, Kang MH, Kim C-G, Lee Y-H, Kim D-J, Lee JM, Kusakabe T (2014) Characterization of Cryptopygus antarcticus endo-β-1, 4-glucanase from Bombyx mori expression systems. Mol Biotechnol 56(10):878–889

    Article  CAS  PubMed  Google Scholar 

  • Khajeh K, Ranjbar B, Naderi-Manesh H, Habibi AE, Nemat-Gorgani M (2001) Chemical modification of bacterial α-amylases: changes in tertiary structures and the effect of additional calcium. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1548(2):229–237

    Article  CAS  Google Scholar 

  • Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur J Biochem 198(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? Trends Biotechnol 15(3):97–101

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    Article  CAS  PubMed  Google Scholar 

  • Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35(2–3):126–139

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Chari R, Sharma VK, Kalonia DS (2011) Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water. Int J Pharm 413(1–2):19–28

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Mahapatra P, Kumar GV, Banerjee R (2008) Comparative study of thermostabilty and ester synthesis ability of free and immobilized lipases on cross linked silica gel. Bioprocess Biosyst Eng 31(4):291–298

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Timasheff SN (1981) The stabilization of proteins by sucrose. J Biol Chem 256(14):7193–7201

    CAS  PubMed  Google Scholar 

  • Lee M, Chen B-Y, Den W (2015) Chitosan as a natural polymer for heterogeneous catalysts support: a short review on its applications. Appl Sci 5(4):1272–1283

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardani T, Khiabani MS, Mokarram RR, Hamishehkar H (2018) Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. Int J Biol Macromol 120(Pt A):354–360

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kida K, Kondo K (1997) Effects of polyols and organic solvents on thermostability of lipase. J Chem Technol Biotechnol 70(2):188–192

    Article  CAS  Google Scholar 

  • Matulis D, Wu C, Van Pham T, Guy C, Lovrien R (1999) Protection of enzymes by aromatic sulfonates from inactivation by acid and elevated temperatures. J Mol Catal B Enzym 7(1–4):21–36

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Milstein O, Nicklas B, Hüttermann A (1989) Oxidation of aromatic compounds in organic solvents with laccase from Trametes versicolor. Appl Microbiol Biotechnol 31(1):70–74

    Article  CAS  Google Scholar 

  • Miroliaei M, Nemat-Gorgani M (2002) Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: a comparative study. Int J Biochem Cell Biol 34(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Gemba Y, Yutori Y, Doukyu N, Ishimi K, Ishikawa H (2007) Stabilities and conformational transitions of various proteases in the presence of an organic solvent. Biotechnol Prog 23(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Pahujani S, Kanwar SS, Chauhan G, Gupta R (2008) Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: enzyme characteristics and stability. Biores Technol 99(7):2566–2570

    Article  CAS  Google Scholar 

  • Pazhang M, Khajeh K, Ranjbar B, Hosseinkhani S (2006) Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin. J Biotechnol 127(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Pazhang M, Mehrnejad F, Pazhang Y, Falahati H, Chaparzadeh N (2016) Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnol Appl Biochem 63(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • Pazhang M, Mardi N, Mehrnejad F, Chaparzadeh N (2018a) The combinatorial effects of osmolytes and alcohols on the stability of pyrazinamidase: methanol affects the enzyme stability through hydrophobic interactions and hydrogen bonds. Int J Biol Macromol 108:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Pazhang M, Younesi FS, Mehrnejad F, Najavand S, Tarinejad A, Haghi M, Rashno F, Khajeh K (2018b) Ig-like domain in endoglucanase Cel9A from Alicyclobacillus acidocaldarius makes dependent the enzyme stability on calcium. Mol Biotechnol 60(9):698–711

    Article  CAS  PubMed  Google Scholar 

  • Pereira JH, Sapra R, Volponi JV, Kozina CL, Simmons B, Adams PD (2009) Structure of endoglucanase Cel9A from the thermoacidophilic Alicyclobacillus acidocaldarius. Acta Crystallogr D Biol Crystallogr 65(8):744–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen SB, Jonson V, Fojan P, Wimmer R, Pedersen S (2004) Sorbitol prevents the self-aggregation of unfolded lysozyme leading to an up to 13 C stabilisation of the folded form. J Biotechnol 114(3):269–278

    Article  CAS  PubMed  Google Scholar 

  • Pliura DH, Jones JB (1980) Effects of organic solvents on immobilized enzyme catalyses: chymotrypsin immobilized on Sephadex. Can J Chem 58(23):2633–2640

    Article  CAS  Google Scholar 

  • Rahimizadeh P, Najavand S, Pazhang M (2015) A comparative study of activity and stability of the free and the immobilized endoglucanase from Alicyclobacillus acidocaldarius. Biomacromol J 1(2):167–176

    Google Scholar 

  • Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) ChNPs: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. British Microbiol Res J 3(3):235–258

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  CAS  Google Scholar 

  • Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25(6):471–482

    Article  CAS  Google Scholar 

  • Simon L, Kotorman M, Garab G, Laczko I (2001) Structure and activity of α-chymotrypsin and trypsin in aqueous organic media. Biochem Biophys Res Commun 280(5):1367–1371

    Article  CAS  PubMed  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci 103(38):13997–14002

    Article  CAS  PubMed  Google Scholar 

  • Timasheff SN (1998) Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv Protein Chem 51(51):355–432

    Article  CAS  PubMed  Google Scholar 

  • Timasheff SN (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci 99(15):9721–9726

    Article  CAS  PubMed  Google Scholar 

  • Tjernberg A, Markova N, Griffiths WJ, Hallén D (2006) DMSO-related effects in protein characterization. J Biomol Screen 11(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Trevan MD (1980) Immobilized enzymes: an introduction and application in biotechnology. Wiley, Chichester, UK

    Google Scholar 

  • Tsuzuki W, Ue A, Nagao A (2003) Polar organic solvent added to an aqueous solution changes hydrolytic property of lipase. Biosci Biotechnol Biochem 67(8):1660–1666

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich-Hofmann R, Arnold U, Mansfeld J (1999) The concept of the unfolding region for approaching the mechanisms of enzyme stabilization. J Mol Catal B Enzym 7(1–4):125–131

    Article  CAS  Google Scholar 

  • Vagenende V, Yap MG, Trout BL (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48(46):11084–11096

    Article  CAS  PubMed  Google Scholar 

  • Wan Y-Y, Lu R, Xiao L, Du Y-M, Miyakoshi T, Chen C-L, Knill CJ, Kennedy JF (2010) Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Int J Biol Macromol 47(4):488–495

    Article  CAS  PubMed  Google Scholar 

  • Wong LS, Thirlway J, Micklefield J (2008) Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. J Am Chem Soc 130(37):12456–12464

    Article  CAS  PubMed  Google Scholar 

  • Zhan D, Du Y, Qian B (1991) Study of immobilized laccase and its properties. Chem Indus For Prod 11:111–116

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Najavand.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Najavand, S. & Pazhang, M. Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability. 3 Biotech 9, 269 (2019). https://doi.org/10.1007/s13205-019-1794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1794-5

Keywords

Navigation