Skip to main content
Log in

Identification of new members of alkaliphilic lipases in archaea and metagenome database using reconstruction of ancestral sequences

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The application of bioinformatics in lipase research has the potential to discover robust members from different genomic/metagenomic databses. In this study, we explored the diversity and distribution of alkaliphilic lipases in archaea domain and metagenome data sets through phylogenetic survey. Reconstructed ancestral sequence of alkaphilic lipase was used to search the homologous alkaliphilic lipases among the archaea and metagenome public databases. Our investigation revealed a total 21 unique sequences of new alkaliphilic lipases in the archaeal and environmental metagenomic protein databases that shared significant sequence similarity to the bacterial alkaliphilic lipases. Most of the identified new members of alkaliphilic lipases belong to class Haloarchaea. The searched list of homologs also comprised of one characterized lipase from alkalohyperthermophilic Archaeoglobus fulgidus. All the newly identified alkaliphilic lipase members showed conserved pentapeptide [X-His-Ser-X-Gly] motif, a key feature of lipase family. Furthermore, detailed analysis of all these new sequences showed homology either with thermostable or alkalophilic lipases. The reconstructed ancestral sequence-based searches increased the sensitivity and efficacies to detect remotely homologous sequences. We hypothesize that this study can enrich our current knowledge on lipases in designing more potential thermo-alkaliphilic lipases for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abol Fotouh DM, Bayoumi RA, Mohamed Hassan A (2016) Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzym Res 2016:1–9. https://doi.org/10.1155/2016/9034364

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528–530

    Article  CAS  Google Scholar 

  • Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH (2009) Structure of the alkalohyperthermophilic Archaeoglobusfulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. J Mol Biol 390:672–685

    Article  CAS  Google Scholar 

  • Collins LJ, Poole AM, Penny D (2003) Using ancestral sequences to uncover potential gene homologues. Appl Bioinform 2:S85–S95

    CAS  Google Scholar 

  • Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Trends Ecol Evol 13:361–366

    Article  CAS  Google Scholar 

  • Demirjian DC, Moris F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  Google Scholar 

  • Derewenda Z, Derewenda U (1991) Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases. Biochem Cell Biol 69:842–851

    Article  CAS  Google Scholar 

  • Duflos M, Goutx M, Van Wambeke F (2009) Determination of lipid degradation by marine lipase-producing bacteria: critical evaluation of lipase activity assays. Lipids 44:1113–1124

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Elias I, Tuller T (2007) Reconstruction of ancestral genomic sequences using likelihood. J Comput Biol 14:216–237

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  Google Scholar 

  • Ingham AB, Pemberton JM (1995) A lipase of Aeromonas hydrophila showing nonhemolytic phospholipase C activity. Curr Microbiol 31:28–33

    Article  CAS  Google Scholar 

  • Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277:17041–17047

    Article  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  Google Scholar 

  • Kadri T, Rouissi T, Magdouli S, Brar SK, Hegde K, Khiari Z, Daghrir R, Lauzon JM (2018) Production and characterization of novel hydrocarbon degrading enzymes from Alcanivorax borkumensis. Int J Biol Macromol. 112:230–240

    Article  CAS  Google Scholar 

  • Koshi JM, Goldstein RA (1996) Probabilistic reconstruction of ancestral protein sequences. J Mol Evol 42:313–320

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  • Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216:155–160

    Article  CAS  Google Scholar 

  • Littlechild JA (2015) Archaeal enzymes and applications in industrial biocatalysts, Archaea 2015:10

    Article  Google Scholar 

  • Lobb B, Kurtz D, Moreno-Hagelsieb G, Doxey AC (2015) Remote homology and the functions of metagenomic dark matter. Front Genet 6:234

    Article  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  Google Scholar 

  • Meghwanshi GK, Vashishtha A (2018) Biotechnology of fungal lipases. In: Fungi and their role in sustainable development: current perspectives. Springer Nature Singapore pp 383–411

    Chapter  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM et al. (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  Google Scholar 

  • Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechno 36:105–110

    Article  CAS  Google Scholar 

  • Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbio l94:295–300

    Article  Google Scholar 

  • Saw JH, Spang A, Zaremba-Niedzwiedzka K, Juzokaite L, Dodsworth JA, Murugapiran SK, Colman DR, Takacs-Vesbach C, Hedlund BP, Guy L, Ettema TJ (2015) Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos Trans R Soc Lond B Biol Sci 2:370

    Google Scholar 

  • Saxena RK, Agarwal L, Meghwanshi GK (2005) Diversity of fungal and yeast lipases: present and future scenario for the 21st century. In: Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd 791–814. ISBN 9788188237432

  • Sharma PK, Kumar R, Kumar R, Mohammad O, Singh R, Kaur J (2011) Engineering of a metagenome derived lipase towards thermal tolerance: effect of aspargine to lysine mutation on the protein surface. Gene 491:264–271

    Article  Google Scholar 

  • Sharma PK, Kumar R, Garg P, Kaur J (2015) Insights into controlling role of substitution mutation, E315G on thermostability of a lipase cloned from metagenome of hot spring soil. 3Biotech 4:189–196

    Google Scholar 

  • Shu ZY, Jiang H, Lin RF, Jiang YM, Lin L, Huang JZ (2010) Technical methods to improve yield, activity and stability in the development of microbial lipases. J Mol Catal B: Enzym 62:1–8

    Article  CAS  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Tech 3:182–196

    Article  CAS  Google Scholar 

  • Verma S, Meghwanshi GK, Kumar R (2018) Structural homogeneity in microbial lipases. Microbiol Curr Res 2:12–13

    Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Athar Alam from Umeå University, Sweden, for his help to improve the language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Kumar Meghwanshi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest for publishing this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kumar, R. & Meghwanshi, G.K. Identification of new members of alkaliphilic lipases in archaea and metagenome database using reconstruction of ancestral sequences. 3 Biotech 9, 165 (2019). https://doi.org/10.1007/s13205-019-1693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1693-9

Keywords

Navigation