Skip to main content

Abstract

Fungal lipases are incomparable biocatalysts which find applications in a number of catalytic processes which are of industrial potential. Many fermentation strategies have been designed for easy cultivation and scale-up of fungal lipases. However, two major methods are used for their production: submerged fermentation (SmF) and solid-state fermentation (SSF). Both the methods are employed at industrial scale, and their use is mainly dependent on the fungal product to be produced. A variety of strategies have been developed for their purification and characterization in order to know the optimal conditions for their applications. Fungal lipases are exceptional with considerable variations in their properties such as substrate specificity (chemo-, regio-, and enantiospecificity), temperature tolerance, pH tolerance, and organic solvent stability. Based on the variations in the properties, a wide array of lipases is available which can be used as per the specific need of any industrial process. Presently fungal lipases find many industrial applications such as oleochemical, food and feed, dairy, agrochemical, biomedical, biodiesel, detergent, pulp and paper, biosensors, waste remediation, leather processing, polymer synthesis, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas H, Hiol A, Deyris V, Comeau L (2002) Isolation and characterization of an extracellular lipase from Mucor sp strain isolated from palm fruit. Enzym Microb Technol 31:968–975

    Article  CAS  Google Scholar 

  • Aguieiras ECG, Veloso CO, Bevilaqua JV, Rosas DO, da Silva MAP, Langone MAP (2011) Estolides synthesis catalyzed by immobilized lipases. Enzym Res. https://doi.org/10.4061/2011/432746

  • Aisaka K, Terada O (1979) Production of lipoprotein lipase and lipase by Rhizopus japonicus. Agric Biol Chem 43(10):2125–2129

    CAS  Google Scholar 

  • Akhtar MW, Mirza AQ, Nawazish MN, Chughtai MID (1983) Effect of triglycerides on the production of lipids and lipase by Mucor heimalis. Can J Microbiol 29:664–669

    Article  PubMed  CAS  Google Scholar 

  • Akhter MW, Miraz AQ, Chughati MDI (1980) Lipase induction in Mucor hiemalis. Appl Environ Microbiol 18:257–263

    Google Scholar 

  • Asahara T, Matori M, Ikemoto M, Ota Y (1993) Production of 2 types of lipases with opposite positional specificity by Geotrichum sp. FO401B. Biosci Biotechnol Biochem 57:390–394

    Article  CAS  Google Scholar 

  • Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzym Microb Technol 18:392–416

    Article  CAS  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8(1):39–43

    Article  PubMed  CAS  Google Scholar 

  • Benjamin S, Pandey A (1996) Optimization of liquid media for lipase production by Candida rugosa. Bioresour Technol 55:167–170

    Article  CAS  Google Scholar 

  • Brahimi-Horn MC, Guglielmino ML, Elling L, Sparrow LG (1990) The esterase profile of a lipase from Candida cylindracea. Biochim Biophys Acta 1042(1):51–54

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff H, Jensen R (1974) Lipolytic enzymes. Academic, New York 1974

    Book  Google Scholar 

  • Burkert JF, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91(1):77–84

    Article  PubMed  CAS  Google Scholar 

  • Bόdalo A, Bastida J, Máximo MF, Montiel MC, Gómez M, Murcia MD (2008) Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa. Biochem Eng J 39(3):450–456

    Article  CAS  Google Scholar 

  • Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of waste water with high oil and grease content. Bioresour Technol 97(17):2195–2210

    Article  PubMed  CAS  Google Scholar 

  • Chahinian H, Vanot G, Ibrik A, Rugani N, Sarda L, Comeau LC (2000) Production of extracellular lipases by Penicillium cyclopium purification and characterization of partial acylglycerol lipase. Biosci Biotechnol Biochem 64(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Chamorro S, Sanchez-Montero JM, Alcantara AR, Sinisterra JV (1998) Treatment of Candida rugosa lipase with short-chain polar organic solvents enhances its hydrolytic and synthetic activities. Biotechnol Lett 20:499–505

    Article  CAS  Google Scholar 

  • Chander H, Klostermeyer H (1983) Production of lipase by Fusarium solani under various growth conditions. Sci Aliment 3:274–285

    Google Scholar 

  • Charton E, Macrae AR (1992) Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426. Biochim Biophys Acta 1123(1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ishu T, Shimura S, Kirimura K, Usami S (1992) Lipase production by Trichosporn fermentas WU-G2 , a newly isolated yeast. J Ferment Bioeng 73:412–414

    Article  CAS  Google Scholar 

  • Comménil P, Belingheri L, Sancholle M, Dehorter B (1995) Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids 30(4):351–356

    Article  PubMed  Google Scholar 

  • Cordova J, Nemmaoui M, Ismaili-Alaoui M, Morin A, Roussos S, Raimbault M, Benjilali B (1998) Lipase production by solid state fermentation of olive cake and sugar cane bagasse. J Mol Catal B Enzym 5:75–78

    Article  CAS  Google Scholar 

  • Corrêa INS, Souza SL, Catran M, Bernardes OL, Portilho MF, Langone MAP (2011) Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. Enzym Res. https://doi.org/10.4061/2011/814507

  • Cross H, Marriot R, Gorgan G (2004) Enzymatic esterification of lavandulol – a partial kinetic resolution of (S)-lavandulol and preparation of optically enriched (R)-lavandulyl acetate. Biotechnol Lett 26(5):457–460

    Article  PubMed  CAS  Google Scholar 

  • Cunha AG, da Silva AAT, da Silva AJR, Tinoco LW, Almeida RV, De Alencastro RB, Simas ABC, Freire DMG (2010) Efficient kinetic resolution of (±)-1,2-O-isopropylidene-3,6-diO-benzyl-myo-inositol with the lipase B of Candida antarctica. Tetrahedron Asymmetry 21(24):2899–2903

    Article  CAS  Google Scholar 

  • da Silva JA, Freire DMG, Habert A, Soares V (2013) Process for the production of bio-lubricant from methyl biodiesel and bio-lubricant obtained by said process. EP2657324A1, October 30, 2013

    Google Scholar 

  • de Maia M MD, de Morais MMC, de Morais MA Jr, Melo EHM, de Lima Filho JL (1999) Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1. Rev Microbiol 30(4):304–309

    Article  Google Scholar 

  • de Sousa JS, Cavalcanti-Oliveira ED, Aranda DAG, Freire DMG (2010) Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydro esterification process for biodiesel production. J Mol Catal B Enzym 65(1–4):133–137

    Article  CAS  Google Scholar 

  • Destain J, Roblain D, Thonart P (1997) Improvement of lipase production from Yarrowia lipolytica. Biotechnol Lett 19(2):105–107

    Article  CAS  Google Scholar 

  • Dharmsthiti S, Ammaranond P (1997) Purification and characterization of lipase from a raw-milk yeast (Trichosporon asteroides). Biotechnol Appl Biochem 26(2):111–116

    PubMed  CAS  Google Scholar 

  • Dunhaupt A, Lang S, Wagner F (1991) Properties and partial purification of a Pseudomonas cepacia lipase. In: Alberghina L, Schmid RD, Verger R (eds) Lipases: structure, mechanism and genetic engineering, GBF monographs, vol 16. VCH, Weinheim 389pp

    Google Scholar 

  • Eitenmiller RR, Vakil JR, Shahani KM (1970) Production and properties of Penicillium roqueforti lipase. J Food Sci 35:130–133

    Article  CAS  Google Scholar 

  • Espinosa E, Sanchez S, Farres A (1990) Nutritional factors affecting lipase production by Rhizopus delemar CDBB H313. Biotechnol Lett 12:209–214

    Article  CAS  Google Scholar 

  • Ferrer M, Plou FJ, Nuero OM, Reyes F, Ballesteros A (2000) Purification and properties of a lipase from Penicillium chrysogenum isolated from industrial wastes. J Chem Technol Biotechnol 75(7):569–576

    Article  CAS  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  PubMed  CAS  Google Scholar 

  • Fureby AM (1995) Aspectson lipase-catalyzed preparation of partialacyl glycerols. Ph.D. thesis, Lund University, Lund. 46 pp

    Google Scholar 

  • George E, Tamerler C, Martinez A, Martinez MJ, Keshavarz T (1999) Influence of growth medium composition on the lipolytic enzyme activity of Ophiostoma piliferum (Cartapip™). J Chem Technol Biotechnol 74:137–140

    Article  CAS  Google Scholar 

  • Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases production and applications. Sci Prog 79:119–157

    PubMed  CAS  Google Scholar 

  • Godtfredsen SE (1990) Microbial lipases. In: Fogarty WM, Kelly ET (eds) Microbial enzymes and biotechnology. Elsevier, Amsterdam 255pp

    Google Scholar 

  • Gog A, Roman M, Tos M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification: current state and perspectives. Renew Energy 39(1):10–16

    Article  CAS  Google Scholar 

  • Gordillo MA, Obradors N, Montesinos L, Valero F, Lafuente J, Solà C (1995) Stability studies and effect of the initial oleic acid concentration on lipase production by Candida rugosa. Appl Micobiol Biotechnol 43:38–41

    Article  CAS  Google Scholar 

  • Gordillo MA, Sanz A, Sánchez A, Valero F, Montesinos JL, Lafuente J, Solà C (1998) Enhancement of Candida rugosa lipase production by using different control fed-batch operational strategies. Biotechnol Bioeng 60:156–168

    Article  PubMed  CAS  Google Scholar 

  • Grbavĉić S, Bezbradica D, Izrael-Živković L, Avramović N, Milosavić N, Karadžić I, Knežević-Jugović Z (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour Technol 102(24):11226–11233

    Article  PubMed  CAS  Google Scholar 

  • Gulati R, Isar J, Kumar V, Prasad AK, Parmar VS, Saxena RK (2005) Production of a novel alkaline lipase by Fusarium globulosum using neem oil and its applications. Pure Appl Chem 77:251–262

    Article  CAS  Google Scholar 

  • Gulomova K, Ziomek E, Schrag JD, Davranov K, Cygler M (1996) Purification and characterisation of a Penicillium sp. lipase which discriminates against diglycerides. Lipids 31:379–384

    Article  PubMed  CAS  Google Scholar 

  • Haas MJ, Bailey DG (1993) Glycerol as a carbon source for lipase production by the fungus Rhizopus delemar. Food Biotechnol 7(1):49–73

    Article  CAS  Google Scholar 

  • Haas MJ, Joerger RD (1995) Lipases of the genera Rhizopus and Rhizomucor versatile catalyst in nature and the laboratory. In: Hui YH, Khachatourians GG (eds) Food biotechnology. VCH Publications, Wyoming 549pp

    Google Scholar 

  • Haas MJ, Kramer JKG, McNeill GP, Scott K, Foglia TA, Sehat N, Fritsche J, Mossoba MM, Yurawecz MP (1999) Lipase-catalysed fractionation of conjugated linoleic acid isomers. Lipids 34:979–987

    Article  PubMed  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hills MJ, Kiewitt I, Mukherjee KD (1990a) Lipase from Brassica napus L discriminates against cis4 and cis-6 unsaturated fatty acids and secondary and tertiary alcohols. Biochim Biophys Acta 1042:237–240

    Article  PubMed  CAS  Google Scholar 

  • Hills MJ, Kiewitt I, Mukherjee KD (1990b) Enzymatic fractionation offatty acids: enrichment of clinolenic acid and docosahexaenoic acid by selective esterification catalysed by lipases. J Am Oil Chem Soc 67:561–564

    Article  CAS  Google Scholar 

  • Holmberg K, Osterberg E (1988) Enzymatic preparation of monoglycerides in microemulsion. J Am Oil Chem Soc 65:1544–1548

    Article  CAS  Google Scholar 

  • Holmquist M, Tessier DC, Cygler M (1997) Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases I and II. Biochemistry 36(48):15019–15025

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Yamane T, Shimizu S (1990) Selective hydrolysis of fish oil by lipase to concentrate n3 polyunsaturated fatty acid. Agric Biol Chem 54:1459–1467

    CAS  Google Scholar 

  • Hoshino T, Sasaki T, Watanabe Y, Nagasawa T, Yamane T (1992) Purification and some characteristic of extracellular lipase from Fusarium oxysporum. Biosci Biotechnol Biochem 56:660–664

    Article  PubMed  CAS  Google Scholar 

  • Huge-Jensen B, Gormsen E (1988) Enzymatic detergent additives. EP Patent 258 068, 2 March 1988

    Google Scholar 

  • Huge-Jensen B, Galluzzo DR, Jensen RG (1987) Partial purification and characterization of free and immobilized lipases from Mucor miehei. Lipids 22(8):559–565

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim CO, Nishio N, Nagai S (1987) Fat hydrolysis and estérification by a lipase from Humicola lanuginose. Agric Biol Chem 51(8):2153–2159

    Article  Google Scholar 

  • Ibrik A, Chahinian H, Rugani N, Sarda L, Comeau LC (1998) Biochemical and structural characterisation of triacylglycerol lipase from Penicillium cyclopium. Lipids 33:377–384

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Okumura S, Tsujisaka Y (1975) The comparison of the properties of two lipases from Penicillium cyclopium. Agric Biol Chem 39:1063–1070

    CAS  Google Scholar 

  • Iwai M, Shimada Y, Tsujiska Y (1980) Purification of Rhizopus delemar lipase by its binding with phospholipids. J Biochem 88:533–538

    Article  PubMed  CAS  Google Scholar 

  • Jachmanian I, Schulte E, Mukherjee KD (1996) Substrate selectivity in esterification of less common fatty acids catalysed by lipases from different sources. Appl Microbiol Biotechnol 44:563–567

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  • Jaeger K, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG (1983) Detection and determination of lipase (acyglycerol hydrolase) activity from various sources. Lipids 18(9):650–657

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, DeJong FA, Clark RM (1986) Determination of lipase specificity. Lipids 18(3):239–252

    Article  Google Scholar 

  • Joshi S, Dhar DN (1987) Specificity of fungal lipase in hydrolytic cleavage of oil. Acta Microbiol Hung 34(2):111–114

    PubMed  CAS  Google Scholar 

  • Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14(2):145–153

    Article  PubMed  CAS  Google Scholar 

  • Kakugawa K, Shobhayashi M, Suzuki O, Miyakawa T (2002a) Purification and characterization of a lipase from the glycolipid producing yeast Kurtzmanomyces sp. I-11. Biosci Biotechnol Biochem 66(5):978–985

    Article  PubMed  CAS  Google Scholar 

  • Kakugawa K, Tamai M, Imamura K, Miyamoto K, Miyoshi S, Morinaga Y, Suzuki O, Miyakawa T (2002b) Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosyl erythritol lipid. Biosci Biotechnol Biochem 66:188–191

    Article  PubMed  CAS  Google Scholar 

  • Kamini NR, Mala JGS, Puvanakrishnan P (1998) Lipase production from Aspergillus niger by solid state fermentation using ginglly oil cake. Process Biochem 35:501–511

    Google Scholar 

  • Kashmiri MA, Adnan A, Butt BW (2006) Production, purification and partial characterization of lipase from Trichoderma viride. Afr J Biotechnol 5(10):878–882

    CAS  Google Scholar 

  • Kaushik R, Marwah RG, Gupta P, Saran S, Saso L, Parmar VS, Saxena RK (2010) Optimization of lipase production from Aspergillus terreus by response surface methodology and its potential for synthesis of partial glycerides under solvent free conditions. Indian J Microbiol 50(4):456–462

    Article  PubMed  CAS  Google Scholar 

  • Köse O, Tüter M, Aksoy HA (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83(2):125–129

    Article  PubMed  Google Scholar 

  • Kundu M, Basu J, Guchhait M, Chakrabarti P (1987) Isolation and characterization of an extracellular lipase the from conidia of Neurospora crassa. J Gen Microbiol 133:149–153

    PubMed  CAS  Google Scholar 

  • Lalonde JJ, Govardhan C, Khaalaf N, Martinez AG, Visuri K, Margolin AL (1995) Cross-linked crystals of Candida rugosa lipase: highly efficient catalysts for the resolution of chiral esters. J Am Chem Soc 117:6845–6852

    Article  CAS  Google Scholar 

  • Langrand G, Rondon N, Triantaphylides C (1990) Short chain flavor esters synthesis by microbial lipases. Biotechnol Lett 12:581–596

    Article  CAS  Google Scholar 

  • Lazar G, Schroder FR (1992) Degradation of lipid by fungi. In: Winekelmann G (ed) Microbial degradation of natural products. VCH, Weiheim 267pp

    Google Scholar 

  • Litchfield C (1972) Analysis of triglycerides. Academic, New York

    Google Scholar 

  • Liu WH, Beppu T, Arima K (1973) Effect of various inhibitors on lipase action of thermophilic fungus Humicola lanuginosa. S-38. Agric Biol Chem 37:2487–2492

    Article  CAS  Google Scholar 

  • Liu R, Jiang, Mou H, Guan H, Hwang HM, Li X (2009) A novel low-temperature resistant alkaline lipase from a soda lake fungus strain Fusarium solani N4-2 for detergent formulation. Biochem Eng J 46(3):265–270

    Article  CAS  Google Scholar 

  • Macrae AR, Hammond RC (1985) Present and future applications of lipases. Biotechnol Genet Eng Rev 3:193–217

    Article  CAS  Google Scholar 

  • Macris JB, Kourentzi E, Hatzinikolaou DG (1996) Studies on localization and regulations of lipase production by Aspergillus niger. Process Biochem 31:807–812

    Article  CAS  Google Scholar 

  • Mahapatro A, Kumar A, Gross RA (2004) Mild, solventfree 𝜔-hydroxy acid polycondensations catalyzed by Candida antarctica lipase B. Biomacromolecules 5(1):62–68

    Article  PubMed  CAS  Google Scholar 

  • Manoel EA, Pais KC, Cunha AG, Coelho MAZ, Freire DMG, Simas ABC (2012) On the kinetic resolution of sterically hindered myo-inositol derivatives in organic media by lipases. Tetrahedron Asymmetry 23(1):47–52

    Article  CAS  Google Scholar 

  • Mase T, Matsumiya Y, Akiba T (1995) Purification and characterization of a new lipase from Fusarium sp. YM-30. Biosci Biotechnol Biochem 59:1771–1772

    Article  PubMed  CAS  Google Scholar 

  • McNeill GP, Shimizu S, Yamane Y (1991) Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils. J Am Oil Chem Soc 68:6–10

    Article  CAS  Google Scholar 

  • McNeill GP, Ackman RG, Moore SR (1996) Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids. J Am Oil Chem Soc 73:1403–1407

    Article  CAS  Google Scholar 

  • Meghwanshi GK, Agrawal L, Dutt K, Saxena RK (2006) Characterization of 1,3-regiospecific lipases from new Pseudomonas and Bacillus isolates. J Mol Catal B Enzym 40:127–131

    Article  CAS  Google Scholar 

  • Mendes AA, Oliveira PC, de Castro HF (2012) Properties and biotechnological applications of porcine pancreatic lipase. J Mol Catal B Enzym 78:119–134

    Article  CAS  Google Scholar 

  • Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1468–1490

    Article  CAS  Google Scholar 

  • Michiyo I (1988) Positionally non-specific lipase. Patent CA 1339844 C, 28 April 1998

    Google Scholar 

  • Millqvist FA, Adlercreutz P, Mattiasson B (1997) Preparation of diglycerides by lipase-catalyzed alcoholysis of triglycerides. Enzym Microb Technol 20:198–206

    Article  Google Scholar 

  • Mladenoska I (2014) Isolation and purification of lipases from Geotrichum Candidum grown on a sunflower oil waste as a carbon source. Chem Eng Trans 42:49–54

    Google Scholar 

  • Montet D, Ratomahenina R, Pina M, Graille J, Galzy P (1985) Purification and characterization of a lipase from Candida curvata Lodder and Kreger – van Rij CBS 570. Eur J Lipid Sci Technol 87(5):181–185

    CAS  Google Scholar 

  • Moore SR, McNeill GP (1996) Production of triglycerides enriched in long-chain n-3 polyunsaturated fatty acids from fish oil. J Am Oil Chem Soc 73:1409–1414

    Article  CAS  Google Scholar 

  • Moskowitz GJ, Cassaign R, West IR, Shen T, Feldman LI (1977) Hydrolysis of animal fat and vegetable oil with Mucor miehei esterase. J Agric Food Chem 25:1146–1150

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee KD (1995) Fractionation of fatty acids and other lipids via lipase-catalyzed reactions. J Fr Oleagineaux Corps Gras Lipides 2:365–368

    CAS  Google Scholar 

  • Mukherjee KD (1998) Lipid biotechnology. In: Akoh CC, Min DB (eds) Food lipids chemistry, nutrition, and biotechnology. Marcel Dekker, New York 589pp

    Google Scholar 

  • Mukherjee KD, Kiewitt I (1998) Structured triacylglycerols resembling human milk fat by transesterification catalyzed by papaya (Carica papaya) latex. Biotechnol Lett 20(6):613–616

    Article  CAS  Google Scholar 

  • Mukherjee KD, Kiewitt I, Hills MJ (1993) Substrate specificities of lipases in view of kinetic resolution of unsaturated fatty acids. Appl Microbiol Biotechnol 40(4):489–493

    Article  CAS  Google Scholar 

  • Nahas E (1988) Control of lipase production Rhizopus oligosporus under various growth conditions. J Gen Microbiol 134:227–233

    CAS  Google Scholar 

  • Nanda S, Scott AI (2004) A highly efficient chemoselective synthesis of 3,5-diketoesters by lipase-catalyzed transesterification: application to the resolution of secondary alcohols. J Mol Catal B Enzym 30:1–12

    Article  CAS  Google Scholar 

  • Novotny C, Dolezalova L, Lieblova J (1994) Dimorphic growth and lipase production in lipolytic yeasts. Folia Microbiol 39(1):71–73

    Article  CAS  Google Scholar 

  • Odibo FJC, Okereke UO, Oyeka CA (1995) Influence of culture condition on the production of lipase of Hendersonula toruloidea. Bioresour Technol 54:81–83

    Article  CAS  Google Scholar 

  • Ohnishi K, Yoshida Y, Sekiguchi J (1994) Lipase production of Aspergillus oryzae. J Ferment Bioeng 77(5):490–495

    Article  CAS  Google Scholar 

  • Okumura S, Iwai M, Tsujiskaka Y (1976) Positional specificities of four kinds of microbial lipases. Agric Biol Chem 40:655–660

    CAS  Google Scholar 

  • Ota Y, Miyairi S, Yamada K (1968) Sterol requirement for the lipase production by Candida cylindracea. Agric Biol Chem 32(12):1476–1478

    Article  CAS  Google Scholar 

  • Ota Y, Nakamiya T, Yamada K (1970) Lipase from Candida paralipolytica. Agric Biol Chem 34(9):1368–1374

    CAS  Google Scholar 

  • Parmar VS, Pati HN, Yadav RP, Kumar A, Bisht KS, Gupta R, Davidson S, Poonam, Saxena RK (1998) Utility of a novel lipase from Aspergillus terreus in deacetylation reactions. Biocatal Biotransformation 16:17–25

    Article  CAS  Google Scholar 

  • Patkar SA, Bjorkling F (1994) Lipase inhibitors. In: Woolley P, Petersen SB (eds) Lipases-their structure, biochemistry and application. Cambridge University Press, Cambridge 207pp

    Google Scholar 

  • Petersen SB, Drablos F (1994) A sequence analysis of lipases, esterases and related proteins. In: Woolley P, Petersen SB (eds) Lipases – their structure, biochemistry and application. Cambridge University Press, Cambridge 23pp

    Google Scholar 

  • Raminelli C, Kagohara E, Pellizari VH, Comasseto JV, Andrade LH, Porto ALM (2007) Biotransformations of mannich bases and propiophenones by Brazilian microorganisms and enzymatic resolution of phenylpropanols by lipase from Candida antarctica (Novozyme 435). Enzym Microb Technol 40:362–369

    Article  CAS  Google Scholar 

  • Rapp P (1995) Production, regulation and some properties of lipase activity from Fusarium oxysporum f. sp. vasinfectum. Enzym Microb Technol 17:832–838

    Article  CAS  Google Scholar 

  • Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27(4):398–408

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues RC, Fernandez-Lafuente R (2012) Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B Enzym 64(1–2):1–22

    Google Scholar 

  • Romero CM, Pera LM, Loto F, Vallejos C, Castro G, Baigori MD (2012) Purification of an organic solvent tolerant lipase from A. niger MYA135 and its applications in ester synthesis. Biocatal Agric Biotechnol 1:25–31

    CAS  Google Scholar 

  • Rosa DR, Duarte ICS, Saavedra NK, Varesche MB, Zaiat M, Cammarota MC, Freire DMG (2009) Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis. Bioresour Technol 100(24):6170–6176

    Article  PubMed  CAS  Google Scholar 

  • Rosu R, Yasui M, Iwasaki Y, Yamane T (1999) Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification in solvent-free system. J Am Oil Chem Soc 76:839–843

    Article  CAS  Google Scholar 

  • Rubin B, Dennis EA (1997a) Lipases, part a: biotechnology. Methods Enzymol 284:1–440

    Google Scholar 

  • Rubin B, Dennis EA (1997b) Lipases, part B: enzyme characterization and utilization. Methods Enzymol 286:1–600

    Google Scholar 

  • Salleh AB, Musani R, Basri M, Ampon K, Yunus WMZ, Razak CNA (1993) Extra-and intra-cellular lipases from a thermophilic Rhizopus oryzae and factors affecting their production. Can J Microbiol 39:976–981

    Article  Google Scholar 

  • Savitha J, Srividya S, Jagat R, Payal P, Priyanki S, Rashmi GW, Roshini KT, Shantala YM (2007) Identification of potential fungal strain(s) for the production of inducible, extracellular and alkalophilic lipase. Afr J Biotechnol 6(5):564–568

    CAS  Google Scholar 

  • Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R (1999) Microbial lipases: potential biocatalyst for the future industry. Curr Sci 77:101–115

    CAS  Google Scholar 

  • Saxena RK, Davidson WS, Sheoran A, Giri B (2003) Purification and characterization on an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247

    Article  CAS  Google Scholar 

  • Saxena RK, Agarwal L, Meghwanshi GK (2005) Diversity of fungal and yeast lipases: present in future scenario for the 21st century. In: Satyanaryana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International Pvt. Ltd, New Delhi 796pp

    Google Scholar 

  • Shimada Y, Sugihara A, Nagao T, Tominaga Y (1992) Induction of Geotrichum candidum lipase by long-chain fatty acids. J Ferment Bioeng 74:77–80

    Article  CAS  Google Scholar 

  • Shimada Y, Koga C, Sugihara A, Takada N, Tsunasawa S, Tominaga Y (1993a) Purification and characterization of a novel solvent-tolerant lipase from Fusarium heterosporum. J Ferment Bioeng 75:349–352

    Article  CAS  Google Scholar 

  • Shimada Y, Sugihara A, Tominaga Y (1993b) Microbial lipase: structure and production. In: Murooka Y (ed) Recombinant microbes for industrial and agricultural applications. CRC Press, Boca Raton 359pp

    Google Scholar 

  • Shimada Y, Maruyama K, Okazaki S, Nakamura M, Sugihara A, Tominaga Y (1994) Enrichment of polyunsaturated fatty acids with Geotrichum candidum lipase. J Am Oil Chem Soc 71(9):951–954

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76(7):789–793

    Article  CAS  Google Scholar 

  • Stead R (1986) Microbial lipases: their characteristic, role in food spoliage and industrial uses. J Dairy Sci 53:481–505

    CAS  Google Scholar 

  • Syed Rahmatullah MSK, Shukla VKS, Mukherjee KD (1994) c-Linolenic acid concentrates from borage and evening primrose oil fatty acids via lipase-catalyzed esterification. J Am Oil Chem Soc 71:563–567

    Article  Google Scholar 

  • Sztajer H, Zboinska C (1988) Microbial lipases in biotechnology. Acta Biotechnol 8:169–175

    Article  CAS  Google Scholar 

  • Sztazer H, Maliszewska I (1988) The effect of culture condition on lipolytic productivity of microorganisms. Biotechnol Lett 10:199–204

    Article  Google Scholar 

  • Tan T, Zhang M, Wang B, Ying C, Deng L (2003) Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem 39(4):459–465

    Article  CAS  Google Scholar 

  • Tanaka Y, Hirano J, Funada T (1992) Concentration of docosahexaenoic acid in glyceride by hydrolysis of fish oil with Candida cylindracea lipase. J Am Oil Chem Soc 69:1210–1214

    Article  CAS  Google Scholar 

  • Toida J, Kondoh K, Fukuzawa M, Ohnishi K, Sekiguchi J (1995) Purification and characterization of a lipase from Aspergillus oryzae. Biosci Biotechnol Biochem 59(7):1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Uston G, Goner S, Arer G, Türkay S, Erciyes AT (1997) Enzymatic hydrolysis of anchovy oil: production of glycerides enriched in polyunsaturated fatty acids. Appl Biochem Biotechnol 68:171–185

    Article  CAS  Google Scholar 

  • Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett 22:11497–11150

    Google Scholar 

  • Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9(1):69–85

    Article  CAS  Google Scholar 

  • Valero F, del-Rio JL, Poch M, Solà C (1991) Fermentation behaviour of lipase production by Candida rugosa growing on different mixtures of glucose and olive oil. J Ferment Bioeng 72:399–401

    Article  CAS  Google Scholar 

  • Valladao ABG, Cammarota MC, Freire DMG (2011) Performance of ananaerobic reactor treating poultry abattoir wastewater with high fat content after enzymatic hydrolysis. Environ Eng Sci 28(4):299–307

    Article  CAS  Google Scholar 

  • Veeraragavan K, Gibbs BF (1989) Detection and partial purification of two lipases from Candida rugosa. Biotechnol Lett 11:345–348

    Article  CAS  Google Scholar 

  • Venkata Rao P, Lakshmanan CM (1991) Lipase enzyme technology and its potential application in the oils and fats industry. Ind Chem Eng 33:7–29

    Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Vulfson EN (1994) Industrial application of lipases. In: Woolley P, Petersen SB (eds) Lipases-their structure, biochemistry and application. Cambridge University Press, Cambridge 271pp

    Google Scholar 

  • Yadav RP, Saxena RK, Gupta R, Davidson S (1997) Production of biosurfactant from sugar alcohols and natural triglycerides by Aspergillus terreus lipase. J Sci Ind Res 56:479–482

    CAS  Google Scholar 

  • Yadav RP, Saxena RK, Gupta R, Davidson WS (1998) Purification and characterization of a regiospecific lipase from Aspergillus terreus. Biotechnol Appl Biochem 28:243–249

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Mase T (1991) High yield synthesis of monoglyceride by monoacylglycerol and diacylglycerol lipase from Penecillium camembertii U-150. J Ferment Bioeng 72:162–167

    Article  CAS  Google Scholar 

  • Zhang WW, Jia JQ, Wang N (2015) Improved activity of lipase immobilized in microemulsion based organogels for (R,S)-ketoprofen ester resolution: long term stability and reusability. Biotechnol Rep 7:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meghwanshi, G.K., Vashishtha, A. (2018). Biotechnology of Fungal Lipases. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_22

Download citation

Publish with us

Policies and ethics