Skip to main content
Log in

Determination of Lipid Degradation by Marine Lipase-Producing Bacteria: Critical Evaluation of Lipase Activity Assays

  • Original Article
  • Published:
Lipids

Abstract

With the aim of obtaining a better understanding of lipids-lipases interactions in bacterioplankton communities in oceans, we used different methods for measuring lipase activities in pure cultures of the marine strain Alteromonas macleodii. The decay of tripalmitate added to cultures was followed chemically over time. In an enzymatic approach, lipase activities were measured using the fluorogenic lipid analogs MUF-palmitate and ELF-palmitate. When hydrolyzed by lipase, the non-fluorescent substrates release MUF and ELF Alcohol (ELFA) which are fluorescent. As shown by spectrofluorometry, ELF-palmitate was an efficient competitor for MUF-palmitate. However, the activities reached using these two fluorogenic substrates were different, but still much higher than the tripalmitate hydrolysis rate, measured chemically. MUF- and ELF-palmitate would not be hydrolyzed by lipase sensu stricto (defined as triacylglycerol acylesterase E.C. 3.1.1.3) but rather reflects lipolytic activities in a broad sense. ELFA is also water-insoluble and theoretically precipitates in the external membrane of bacteria causing its hydrolysis, which would allow microscopic identification of active cells. By epifluorescence microscopy, the accumulation of ELFA fluorescence over time was detected (as large, diffuse halos), but no precipitates were clearly associated with bacteria on slide preparations, neither for pure cultures of Alteromonas macleodii nor for natural samples from the Bay of Marseille, France. Among possible biases, those related to the hydrophobic/hydrophilic conditions required for precipitation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

DMSO:

Dimethylsulfoxide

ELFA:

Enzyme-labeled fluorescence alcohol

ELF-palmitate:

Enzyme-labeled fluorescence-palmitate

FFA:

Free fatty acid

IC50:

ELF-palmitate concentration giving a 50% inhibition of MUF-palmitate hydrolysis

K m :

Michaelis–Menten constant

MUF:

4-Methylumbelliferyl

MUF-palmitate:

4-Methylumbelliferyl-palmitate

OM:

Organic matter

PYR culture:

Culture grown in medium where the single carbon source is pyruvate

PYR medium:

Medium where the single carbon source is pyruvate

TLC-FID:

Thin layer chromatography-flame ionization detection

TG:

Triglyceride

TG culture:

Culture grown in triglyceride-enriched medium

TG medium:

Triglyceride-enriched medium

V max :

Maximum hydrolysis rate (determined by Michaelis–Menten equation)

References

  1. Billen G, Joiris C, Wijnant J, Gillain G (1980) Concentration and microbial utilization of small organic molecules in the Scheldt estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuar Coast Mar Sci 11:279–294

    Article  CAS  Google Scholar 

  2. Ducklow HW, Purdie DA, Williams PJL, Davies JM (1986) Bacterioplankton: a sink for a carbon in a coastal marine plankton community. Science 232:865–867

    Article  PubMed  CAS  Google Scholar 

  3. Joint IR, Morris RJ (1982) The role of bacteria in the turnover of organic matter en the sea. Oceanogr Mar Biol A Rev 20:65–118

    CAS  Google Scholar 

  4. Pomeroy L, Wiebe W (1988) Energetics of microbial food webs. Hydrobiologia 159:7–18

    Google Scholar 

  5. Münster U, Albrecht D (1994) Analysis of composition and function by a molecular–biochemical approach. In: Overbeck J, Chrost RJ (eds) Microbial ecology of lake Plußsee. Springer, NY

    Google Scholar 

  6. Bianchi M (1998) Nouvelles approches d’étude des réseaux microbiens. Ann Limnol 34(4):465–473

    Article  Google Scholar 

  7. Jeffrey LM (1966) Lipids in sea water. J Am Oil Chem Soc 43:211–214

    Article  CAS  Google Scholar 

  8. Ogura N, Ambe Y, Ogura K, Ishiwatari R, Mizutani T, Satoh Y, Matsushima H, Katase T, Ochiai M, Tadokoro K, Takada T, Sughihara K, Matsumoto G, Nakamoto N, Funakoshi M, Hanya T (1975) Chemical composition of organic compounds present in water of the Tamagawa River. Jpn J Limnol 36:23–30

    Google Scholar 

  9. Bourguet N, Goutx M, Ghiglione JF, Pujo-Pay M, Mével G, Momzikoff A, Mousseau L, Guigue C, Garcia N, Raimbault P, Pete R, Oriol L, Lefèvre D (2009) Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the dyfamed site, NW Mediterranean. Deep Sea Res Part II. doi:10.1016/j.dsr2.2008.11.034

  10. Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton

    Google Scholar 

  11. Bourguet N, Torreton JP, Galy O, Arondel V, Goutx M (2003) Application of a specific and sensitive radiometric assay for microbial lipase activities in marine water samples from the Lagoon of Noumea. Appl Environ Microbiol 69:7395–7400

    Article  PubMed  CAS  Google Scholar 

  12. Martinez J, Smith DC, Steward GF, Azam F (1996) Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat Microb Ecol 10:223–230

    Article  Google Scholar 

  13. Gonzalez-Gil S, Keafer BA, Jovine RVM, Aguilera A, Lu S, Anderson DM (1998) Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser 164:21–35

    Article  CAS  Google Scholar 

  14. Rengefors K, Pettersson K, Blenckner T, Anderson DM (2001) Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J Plankton Res 23:435–443

    Article  CAS  Google Scholar 

  15. Strojsova A, Vrba J, Nedoma J, Komrkova J, Znachor P (2003) Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol 38:295–306

    Article  CAS  Google Scholar 

  16. Nedoma J, Strojsova A, Vrba J, Komarkova J, Simek K (2003) Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol 5:462–472

    Article  PubMed  CAS  Google Scholar 

  17. Van Wambeke F, Nedoma J, Duhamel S, Lebaron P (2008) Alkaline phosphatase activity of marine bacteria studied with ELF 97 substrate: success and limits in the P-limited Mediterranean Sea. Aquat Microb Ecol 52:245–251

    Article  Google Scholar 

  18. Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, Wanner J, Nielsen PH (2007) Ecophysiology of mycolic acid-containing actinobacteria (mycolata) in activated sludge foams. FEMS Microbiol Ecol 61:174–184

    Article  PubMed  CAS  Google Scholar 

  19. Kragelund C, Kong Y, van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152:3003–3012

    Article  PubMed  Google Scholar 

  20. Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54:111–122

    Article  PubMed  CAS  Google Scholar 

  21. Schade M, Lemmer H (2005) Lipase Activities in Activated Sludge and Scum - Comparison of New and Conventional Techniques. Acta hydrochimica et hydrobiologica 33:210–215

    Article  CAS  Google Scholar 

  22. Strojsova A, Vrba J (2005) Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF). Mar Freshw Res 56:189–195

    Article  CAS  Google Scholar 

  23. Duhamel S, Gregori G, Van Wambeke F, Mauriac R, Nedoma J (2008) A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry. J Microbiol Meth 75:269–278

    Article  CAS  Google Scholar 

  24. Lyman J, Fleming RH (1940) Composition of seawater. J Mar Res 3:134–146

    CAS  Google Scholar 

  25. Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    Article  CAS  Google Scholar 

  26. Striby L, Lafont R, Goutx M (1999) Improvement in the Iatroscan thin-layer chromatographic-flame ionisation detection analysis of marine lipids. Separation and quantitation of monoacylglycerols and diacylglycerols in standards and natural samples. J Chromatogr A 849:371–380

    Article  PubMed  CAS  Google Scholar 

  27. Goutx M, Guigue C, Striby L (2003) Triacylglycerol biodegradation experiment in marine environmental conditions: definition of a new lipolysis index. Org Geochem 34:1465–1473

    Article  CAS  Google Scholar 

  28. Nedoma J, Van Wambeke F, Strojsova A, Strojsova M, Duhamel S (2007) An alternative way to determine the affinity of extracellular phosphatases for ELF97 phosphate in aquatic environments. Mar Freshw Res 58:454–460

    Article  CAS  Google Scholar 

  29. Strojsova A, Vrba J (2006) Phytoplankton extracellular phosphatases: investigation using the ELF (enzyme Labelled Fluorescence) technique. Pol J Ecol 54:715–723

    CAS  Google Scholar 

  30. Carlsson P, Caron DA (2001) Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol Oceanogr 46:108–120

    Article  CAS  Google Scholar 

  31. Nedoma J, Vrba J (2006) Specific activity of cell-surface acid phosphatase in different bacterioplankton morphotypes in an acidified mountain lake. Environ Microbiol 8:1271–1279

    Article  PubMed  CAS  Google Scholar 

  32. Lotti M, Monticelli S, Luis Montesinos J, Brocca S, Valero F, Lafuente J (1998) Physiological control on the expression and secretion of Candida rugosa lipase. Chem Phys Lipids 93:143–148

    Article  PubMed  CAS  Google Scholar 

  33. Brune AK, Gotz F (1992) Degradation of lipids by bacterial lipases. In: Winkelman G (ed) Microbial degradation of natural products. VCH, Weinhein

    Google Scholar 

  34. Chróst RJ, Gajewski AJ (1995) Microbial utilization of lipids in lake water. FEMS Microbiol Ecol 18:45–50

    Google Scholar 

  35. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  PubMed  CAS  Google Scholar 

  36. Kosugi Y, Kamibayashi A (1971) Thermostable lipase from Pseudomonas sp.: cultural conditions and properties of the crude enzyme. J Ferment Technol 49:968–980

    CAS  Google Scholar 

  37. Sztajer H, Maliszewska I, Wieczorek J (1988) Production of exogenous lipases by bacteria, fungi, and actinomycetes. Enzyme Microb Technol 10:492–497

    Article  CAS  Google Scholar 

  38. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303

    PubMed  CAS  Google Scholar 

  39. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    PubMed  CAS  Google Scholar 

  40. Eichinger M (2007) Bacterial degradation of dissolved organic carbon in the water column: an experimental and modelling approach. Thesis Vrije Universiteit Amsterdam, The Netherlands/University of Aix-Marseille II, France, p 163

  41. Novitsky JA, Morita RY (1977) Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl Environ Microbiol 33:635–641

    PubMed  CAS  Google Scholar 

  42. Boetius A, Lochte K (1996) Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar Ecol Prog Ser 140:239–250

    Article  Google Scholar 

  43. McKellar RC (1989) Regulation and control of synthesis. In: Mc Kellar RC (ed) Enzymes of psychrotrophs in raw food. CRC Press, Boca Raton

    Google Scholar 

  44. Crottereau C, Delmas D (1998) Exoproteolytic activity in an Atlantic pond (France): estimates of in situ activity. Aquat Microb Ecol 15:217–224

    Article  Google Scholar 

  45. Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  PubMed  CAS  Google Scholar 

  46. Taylor GT, Way J, Yu Y, Scranton MI (2003) Ectohydrolase activity in surfaces waters of the Hudson River and western Long Island Sound estuaries. Mar Ecol Prog Ser 263:1–15

    Article  CAS  Google Scholar 

  47. Beisson F, Ferte N, Nari J, Noat G, Arondel V, Verger R (1999) Use of naturally fluorescent triacylglycerols from Parinari glaberrimum to detect low lipase activities from Arabidopsis thaliana seedlings. J Lipid Res 40:2313–2321

    PubMed  CAS  Google Scholar 

  48. Hendrickson HS (1994) Fluorescence-based assays of lipases, phospholipases, and other lipolytic enzymes. Anal Biochem 219:1–8

    Article  PubMed  CAS  Google Scholar 

  49. Beisson F, Tiss A, Rivière C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 102:33–153

    Article  Google Scholar 

  50. Huang Z, Terpetschnig E, You W, Haugland RP (1992) 2-(2′-phosphoryloxyphenyl)-4-(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Anal Biochem 207:32–39

    Article  PubMed  CAS  Google Scholar 

  51. Paragas VB, Kramer JA, Fox C, Haugland RP, Singer VL (2002) The ELF®-97 phosphatase substrate provides a sensitive, photostable method for labelling cytological targets. J Microsc 206:106–119

    Article  PubMed  CAS  Google Scholar 

  52. Zita A, Hermansson M (1997) Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ. FEMS Microbiol Lett 152:299–306

    Article  PubMed  CAS  Google Scholar 

  53. Zita A, Hermansson M (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63:1168–1170

    PubMed  CAS  Google Scholar 

  54. Kjelleberg S, Hermansson M (1984) Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 48:497–503

    PubMed  CAS  Google Scholar 

  55. Hita C, Parlanti E, Jambu P, Joffre J, Amblès A (1996) Triglyceride degradation in soil. Org Geochem 25:19–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the anonymous reviewers for their helpful comments. We also thank Tracy Bentley and Rose Campbell for improving the English. This study was supported by a graduate research fellowship from the Conseil Régional Provence-Alpes-Côte d’Azur. Funding was obtained from the “Agence de l’eau” de Marseille in the framework of the IBISCUS project (Indicateurs Biologiques et chImiqueS de Contaminations UrbaineS). This work is a CNRS-INSU and Université d’Aix-Marseille II research contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Duflos.

About this article

Cite this article

Duflos, M., Goutx, M. & Van Wambeke, F. Determination of Lipid Degradation by Marine Lipase-Producing Bacteria: Critical Evaluation of Lipase Activity Assays. Lipids 44, 1113–1124 (2009). https://doi.org/10.1007/s11745-009-3358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3358-7

Keywords

Navigation