Skip to main content
Log in

Metabolic engineering for the production of l-phenylalanine in Escherichia coli

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

As one of the three proteinogenic aromatic amino acids, l-phenylalanine is widely applied in the food, chemical and pharmaceutical industries, especially in production of the low-calorie sweetener aspartame. Microbial production of l-phenylalanine has become attractive as it possesses the advantages of environmental friendliness, low cost, and feedstock renewability. With the progress of metabolic engineering, systems biology and synthetic biology, production of l-phenylalanine from glucose in Escherichia coli with relatively high titer has been achieved by improving the intracellular levels of precursors, alleviating transcriptional repression and feedback inhibition of key enzymes, increasing the export of l-phenylalanine, engineering of global regulators, and overexpression of rate-limiting enzymes. In this review, successful metabolic engineering strategies for increasing l-phenylalanine accumulation from glucose in E. coli are described. In addition, perspectives for further improvement of production of l-phenylalanine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524

    Article  CAS  Google Scholar 

  • Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19

    Article  Google Scholar 

  • Boer LD, Dijkhuizen L (1990) Microbial and enzymatic processes for l-phenylalanine production. Adv Biochem Eng Biotechnol 41:1–27

    Google Scholar 

  • Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A (2015) Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol 25:195–208

    Article  CAS  Google Scholar 

  • Ding R, Liu L, Chen X, Cui Z, Zhang A, Ren D, Zhang L (2014) Introduction of two mutations into AroG increases phenylalanine production in Escherichia coli. Biotechnol Lett 36:2103–2108

    Article  CAS  Google Scholar 

  • Ding D, Liu Y, Xu Y, Ping Z, Li H, Zhang D, Sun J (2016) Improving the production of l-phenylalanine by identifying key enzymes through multi-enzyme reaction system in vitro. Sci Rep 6:32208

    Article  CAS  Google Scholar 

  • Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv 29:11–23

    Article  CAS  Google Scholar 

  • Doroshenko V, Airich L, Vitushkina M, Kolokolova A, Livshits V, Mashko S (2007) YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiol Lett 275:312–318

    Article  CAS  Google Scholar 

  • Escalante A, Calderon R, Valdivia A, Anda RD, Hernández G, Ramirez OT (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:21

    Article  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    Article  CAS  Google Scholar 

  • Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. Metab Eng 4:124–137

    Article  CAS  Google Scholar 

  • Gavini N, Davidson BE (1991) Regulation of pheA expression by the pheR product in Escherichia coli is mediated through attenuation of transcription. J Biol Chem 266:7750–7753

    CAS  PubMed  Google Scholar 

  • Ger YM, Chen SL, Chiang HJ, Shiuan D (1994) A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli. J Biochem 116:986–990

    Article  CAS  Google Scholar 

  • Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002a) Process control for enhanced l-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754

    Article  CAS  Google Scholar 

  • Gerigk M, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R (2002b) Enhanced pilot-scale fed-batch l-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst Eng 25:43–52

    Article  CAS  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14

    Article  Google Scholar 

  • Gu P, Yang F, Kang J, Wang Q, Qi Q (2012) One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of l-tryptophan in Escherichia coli. Microb Cell Fact 11:30

    Article  CAS  Google Scholar 

  • Gu P, Su T, Wang Q, Liang Q, Qi Q (2016) Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli. Sci Rep 6:29745

    Article  CAS  Google Scholar 

  • Gunsalus RP, Yanofsky C (1980) Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. Proc Natl Acad Sci USA 77:7117

    Article  CAS  Google Scholar 

  • Haiyan Z, Xianyan L, Tianwen W, Guocheng D, Jian C (2010) Enhanced l-phenylalanine biosynthesis by co-expression of pheA (fbr) and aroF (wt). Bioresour Technol 101:4151–4156

    Article  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The Shikimate pathway annual review of plant physiology and plant. Mol Biol 50:473–503

    CAS  Google Scholar 

  • Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  CAS  Google Scholar 

  • Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiol Lett 202:145–148

    CAS  PubMed  Google Scholar 

  • Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P (2009) Production of l-phenylalanine from glycerol by a recombinant Escherichia coli. J Ind Microbiol Biotechnol 36:1267–1274

    Article  CAS  Google Scholar 

  • Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SP, Xiao MR, Zhang L, Xu J, Ding ZY, Gu ZH, Shi GY (2013) Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochem 48:413–419

    Article  CAS  Google Scholar 

  • Liu SP, Zhang L, Mao J, Ding ZY, Shi GY (2015) Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. Metab Eng 32:55–65

    Article  Google Scholar 

  • Liu Y, Xu Y, Ding D, Wen J, Zhu B, Zhang D (2018) Genetic engineering of Escherichia coli to improve l-phenylalanine production. BMC Biotechnol 18:5

    Article  Google Scholar 

  • Lutke-Eversloh T, Stephanopoulos G (2008) Combinatorial pathway analysis for improved l-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10:69–77

    Article  Google Scholar 

  • Mahr R, Boeselager RFV, Wiechert J, Frunzke J (2016) Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Appl Microbiol Biotechnol 100:6739–6753

    Article  CAS  Google Scholar 

  • Mascarenhas D, Ashworth DJ, Chen CS (1991) Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol 57:2995–2999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate: sugar phosphotransferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11:127

    Article  CAS  Google Scholar 

  • Michael W, Julia TN, Christoph A, Sprenger GA, Dirk WB (2014) Improvement of constraint-based flux estimation during l-phenylalanine production with Escherichia coli using targeted knock-out mutants. Biotechnol Bioeng 111:1406–1416

    Article  Google Scholar 

  • Nelms J, Edwards RM, Warwick J, Fotheringham I (1992) Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol 58:2592–2598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogino T, Garner C, Markley JL, Herrmann KM (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832

    Article  CAS  Google Scholar 

  • Ojima Y, Komaki M, Nishioka M, Iwatani S, Tsujimoto N, Taya M (2009) Introduction of a stress-responsive gene, yggG, enhances the yield of l-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli. Biotechnol Lett 31:525

    Article  CAS  Google Scholar 

  • Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  Google Scholar 

  • Otrokhov GV, Morozova OV, Vasil’eva IS, Shumakovich GP, Zaitseva EA, Khlupova ME, Yaropolov AI (2013) Biocatalytic synthesis of conducting polymers and prospects for its application. Biochemistry 78:1539–1553

    CAS  PubMed  Google Scholar 

  • Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pittard AJ, Davidson BE (1991) TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol 5:1585–1592

    Article  CAS  Google Scholar 

  • Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray JM, Yanofsky C, Bauerle R (1988) Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J Bacteriol 170:5500–5506

    Article  CAS  Google Scholar 

  • Rodriguez A, Martinez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids derived compounds. Microb Cell Fact 13:126

    PubMed  PubMed Central  Google Scholar 

  • Sabido A, Sigala JC, Hernandez-Chavez G, Flores N, Gosset G, Bolivar F (2014) Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol Bioeng 111:1150–1160

    Article  CAS  Google Scholar 

  • Sprenger G (2007a) Aromatic amino acid biosynthesis-pathways, regulation and metabolic engineering. Springer, Heidelberg, pp 93–127

    Google Scholar 

  • Sprenger GA (2007b) From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749

    Article  CAS  Google Scholar 

  • Takors R (2004) Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale l-phenylalanine production. Biotechnol Prog 20:57–64

    Article  CAS  Google Scholar 

  • Tatarko M, Romeo T (2001) Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol 43:26–32

    Article  CAS  Google Scholar 

  • Thongchuang M, Pongsawasdi P, Chisti Y, Packdibamrung K (2012) Design of a recombinant Escherichia coli for producing l-phenylalanine from glycerol. World J Microbiol Biotechnol 28:2937–2943

    Article  CAS  Google Scholar 

  • Tyagi N, Saini D, Guleria R, Mukherjee KJ (2017) Designing an Escherichia coli strain for phenylalanine overproduction by metabolic engineering. Mol Biotechnol 59:1–11

    Article  Google Scholar 

  • Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:532–606

    Article  CAS  Google Scholar 

  • Wallace BJ, Pittard J (1969) Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J Bacteriol 97:1234–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Herrmann KM (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. J Bacteriol 172:6581–6584

    Article  CAS  Google Scholar 

  • Wilson TJ, Maroudas P, Howlett GJ, Davidson BE (1994) Ligand-induced self-association of the Escherichia coli regulatory protein TyrR. J Mol Biol 238:309–318

    Article  CAS  Google Scholar 

  • Wu WB, Guo XL, Zhang ML, Huang QG, Qi F, Huang JZ (2018) Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnol Appl Biochem 65:476–483

    Article  CAS  Google Scholar 

  • Yakandawala N, Romeo T, Friesen AD, Madhyastha S (2008) Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 78:283–291

    Article  CAS  Google Scholar 

  • Yi J, Li K, Draths KM, Frost JW (2002) Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog 18:1141–1148

    Article  CAS  Google Scholar 

  • Zhang S, Pohnert G, Kongsaeree P, Wilson DB, Clardy J, Ganem B (1998) Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273:6248–6253

    Article  CAS  Google Scholar 

  • Zhao G, Winkler ME (1994) An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth. J Bacteriol 176:6134–6138

    Article  CAS  Google Scholar 

  • Zhao ZJ, Zou C, Zhu YX, Dai J, Chen S, Wu D, Wu J, Chen J (2011) Development of l-tryptophan production strains by defined genetic modification in Escherichia coli. J Ind Microbiol Biotechnol 38:1921–1929

    Article  CAS  Google Scholar 

  • Zhou H, Liao X, Liu L, Wang T, Du G, Chen J (2011) Enhanced l-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach. J Ind Microbiol Biotechnol 38:1219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31600066, 31870105, 31741007), the Shandong Provincial Natural Science Foundation (ZR2016CB20, ZR2016CL02), and the State Key Laboratory of Microbial Technology Open Projects Fund (M2016-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Niu, H., Li, Q. et al. Metabolic engineering for the production of l-phenylalanine in Escherichia coli. 3 Biotech 9, 85 (2019). https://doi.org/10.1007/s13205-019-1619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1619-6

Keywords

Navigation