Skip to main content
Log in

Deciphering the genetic and functional diversity of cultivable bacteria from chasmophytic pigweed (Chenopodium album) from Tsomoriri, Ladakh, India

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chasmophytes are a group of diverse plants growing on cracks and crevices of rocks. They survive under nutrient and water-limited conditions. Microorganisms associated with chasmophytes may play a critical role in their survival. In the present study, 263 bacterial isolates were obtained from chasmophytic wild Chenopodium collected from Tsomoriri, Ladakh. Members of Enterobacter, Pseudomonas, Pantoea, and Alcaligenes comprised ~ 90% of the Gram-negative bacteria, while among Gram-positive, Bacillus, Solibacillus, Fictibacillus, Microbacterium, and Micrococcus were most abundant. When evaluated for various plant growth-promoting traits, 36 bacteria could solubilize insoluble phosphate, 10 bacteria could release potassium from silicate minerals, and 25 bacteria could solubilize ZnO, while 124 bacteria produced siderophores. ACC deaminase activity was present in 31 isolates, while 46 bacteria could produce IAA (10.40–232.0 μg/mL). Furthermore, more than 64% of the isolates could grow at 50 °C, while ~ 60% could grow at 4 °C. Similarly, ~ 50% isolates were able to grow with > 1.7 M NaCl and ~ 70% could grow under high osmolarity (~ 67 mOsmol/L). The ability of these microorganisms to grow under such a wide range of temperature, salinity, and osmolarity offers adaptive advantage to colonize plants surviving under harsh environmental conditions. A large number (30–49%) of these isolates could produce acids from various sugars and sugar alcohols which is crucial to release mineral nutrients trapped in the rocks. The results indicated that genetically and functionally diverse microflora associated with wild Chenopodium might be helping these plants to effectively mine nutrients and water under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Gene sequences are available in NCBI, cultures, and other information are available with the corresponding author.

Code availability

Not applicable.

References

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microbial Biotech 7(3):196–208

    Article  CAS  Google Scholar 

  • Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68(12):6005–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make then stronger. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040023

    Article  PubMed  PubMed Central  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CABI (2021) Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc. Accessed 21 Aug 2021

  • Cai D, Xu Y, Zhao F, Zhang Y, Duan H, Guo X (2021) Improved salt tolerance of Chenopodium quinoa Wild. contributed by Pseudomonas sp. strain M30–35. Peer J 9:702. https://doi.org/10.7717/peerj.10702

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Castillo JA, Conde G, Claros M, Ortuño N (2022) Diversity of cultivable microorganisms associated with Quinoa (Chenopodium quinoa) and their potential for plant growth-promotion. Revis Bionat 7(2):61

    Google Scholar 

  • Chakdar H, Pabbi S (2017) A comparative study reveals the higher resolution of RAPD over ARDRA for analyzing diversity of Nostoc strains. 3 Biotech 7:125. https://doi.org/10.1007/s13205-017-0779-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherif H, Marasco R, Rolli E et al (2015) Oasis palm endophytes promote drought resistance. Environ Microbiol Rep 7:668–678. https://doi.org/10.1111/1758-2229.12304

    Article  CAS  PubMed  Google Scholar 

  • Chevuturi A, Dimri AP, Thayyen RJ (2018) Climate change over Leh (Ladakh), India. Theor Appl Climatol 131(1–2):531–545

    Article  Google Scholar 

  • Christy A, Thomas B (2020) Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India. J Threat Taxa 12(9):16099–16109

    Article  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. https://doi.org/10.1099/ijs.0.64915-0

    Article  CAS  PubMed  Google Scholar 

  • Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behaviour of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acid Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E (1996) Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 166:12–22

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Schmidt JE, Gidekel M, Gaudin ACM (2021) Impact of an Antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). J Plant Nutr 44:1818–1825

    Article  CAS  Google Scholar 

  • Ghehestani MMH, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ (2021) Bacterial siderophore improves nutrient uptake, leaf physiochemical characteristics, and grain yield of cumin (Cuminum cyminum L.) ecotypes. J Plant Nutr 44:1794–1806. https://doi.org/10.1080/01904167.2021.1884703

    Article  CAS  Google Scholar 

  • Gibson AH (1963) Physical environment and symbiotic nitrogen fixation. Aust J Biol Sci 16(1):28–42

    Article  CAS  Google Scholar 

  • Hao F, Fu N, Ndiaye H, Woo MW, Jeantet R, Chen XD (2021) Thermotolerance, survival, and stability of lactic acid bacteria after spray drying as affected by the increase of growth temperature. Food Bioprocess Technol 14(1):120–132

    Article  CAS  Google Scholar 

  • He A, Niu S, Yang D et al (2021) Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiol Biochem 161:74–85

    Article  CAS  PubMed  Google Scholar 

  • Jansen PCM (2004) Chenopodium album L. In: Grubben GJH, Denton OA (eds) Vegetables, vol 2. Plant Resources of Tropical Africa (PROTA), pp 178–180

    Google Scholar 

  • Jensen HL (1942) Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. In Proc Linn Soc NSW 66:98–108

    Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20(1):1–4

    Article  Google Scholar 

  • Klinsukon C, Lumyong S, Kuyper TW, Boonlue S (2021) Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings. Sci Rep 11:4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishan A (1996) The habitat of two deserts in India: hot-dry desert of Jaiselmer (Rajasthan) and the cold-dry high altitude mountainous desert of Leh (Ladakh). Energy Build 23(3):217–229

    Article  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol 193:527–541. https://doi.org/10.1007/s00203-011-0695-8

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Riva V, Vergani L, Choukrallah R, Borin S (2020) Unveiling the microbiota diversity of the xerophyte Argania spinosa L. Skeels root system and residuesphere. Microbial Ecol 80(4):822–836

    Article  CAS  Google Scholar 

  • Mukhtar S, Mehnaz S, Malik KA (2019) Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environ Sustain 2(3):329–338

    Article  CAS  Google Scholar 

  • Mukhtar S, Zareen M, Khaliq Z, Mehnaz S, Malik KA (2020) Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. J Appl Microbiol 128(2):556–573

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar S, Mehnaz S, Malik KA (2021) Comparative study of the rhizosphere and root endosphere microbiomes of Cholistan desert plants. Front Microbiol 12:618742. https://doi.org/10.3389/fmicb.2021.618742

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvin S, Van Geel M, Yeasmin T, Verbruggen E, Honnay O (2020) Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza 30(4):431–444

    Article  PubMed  Google Scholar 

  • Patel RR, Patel DD, Thakor P et al (2015a) Alleviation of salt stress in germination of Vigna radiata L. by two halotolerant Bacilli sp. isolated from saline habitats of Gujarat. Plant Growth Regul 76:51–60. https://doi.org/10.1007/s10725-014-0008-8

    Article  CAS  Google Scholar 

  • Patel RR, Thakkar VR, Subramanian BR (2015b) A Pseudomonas guariconensis strain capable of promoting growth and controlling collar rot disease in Arachis hypogaea L. Plant Soil 390:369–381. https://doi.org/10.1007/s11104-015-2436-2

    Article  CAS  Google Scholar 

  • Patel RR, Patel DD, Bhatt J, Thakor P, Triplett LR, Thakkar VR (2021) Induction of pre-chorismate, jasmonate and salicylate pathways by Burkholderia sp. RR18 in peanut seedlings. J Appl Microbiol 131(3):1417–1430

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plantarum 118(1):10–15

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiol 17:362–370

    CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY (2004) Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6(05):629–642

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66(3):389–401

    Article  CAS  Google Scholar 

  • Rohlf FJ (1995) NTSYS-PC Numerical taxonomy and multivariate analysis system. Version 180 Exeter Software. Setauket, New York

  • Saleem H, Mohsin H, Asif A, Tanvir R, Rehman Y (2021) Metagenomics in deciphering microbial communities associated with medicinal plants. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 51–78

    Book  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathol 97(4):523–531

    Article  CAS  Google Scholar 

  • Shirvani M, Nourbakhsh F (2010) Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite. Appl Clay Sci 48:393–397

    Article  CAS  Google Scholar 

  • Singh A, Kumar M, Verma S, Choudhary P, Chakdar H (2020) Plant microbiome: trends and prospects for sustainable agriculture. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer, Cham, pp 129–151

    Book  Google Scholar 

  • Srivastava AK, Srivastava R, Bharati AP et al (2022) Analysis of biosynthetic gene clusters, secretory, and antimicrobial peptides reveals environmental suitability of Exiguobacterium profundum PHM11. Front Microbiol 12:785458. https://doi.org/10.3389/fmicb.2021.785458

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinberger Y, Degani R, Barnen G (1995) Decomposition of root litter and related microbial population dynamics of a Negev desert shrub, Zygophyllum dumosum. J Arid Environ 31:383–389

    Article  Google Scholar 

  • Testen AL, Claros Magnus MI, Backman PA (2022) Plant growth promoting traits of Bacillus species associated with quinoa (Chenopodium quinoa) and lambsquarters (Chenopodium album). Plant Health Prog. https://doi.org/10.1094/PHP-09-21-0121-RS

    Article  Google Scholar 

  • Thomas B, Ramachandran VS, Rajendran A (2011) Ethanomedicinal chasmophytes of Southern Western Ghats in Coimbatore district, Tamil Nadu, India. Hamdard Med 54(3):63

    Google Scholar 

  • Thornton HG (1930) The early development of the root nodule of lucerne (Medicago sativa, L.). Ann Bot 44(174):385–392

    Article  Google Scholar 

  • Unterseher M, Petzold A, Schnittler M (2012) Xerotolerant foliar endophytic fungi of Populus euphratica from the Tarim River basin, Central China are conspecific to endophytic ITS phylotypes of Populus tremula from temperate Europe. Fungal Divers 54(1):133–142

    Article  Google Scholar 

  • van Overbeek LS, Franke AC, Nijhuis EH, Groeneveld RM, da Rocha UN, Lotz LA (2011) Bacterial communities associated with Chenopodium album and Stellaria media seeds from arable soils. Microbial Ecol 62(2):257–264

    Article  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90(5):896–903

    Article  CAS  Google Scholar 

  • Verma S, Kumar M, Kumar A, Das S, Chakdar H, Varma A, Saxena AK (2022) Diversity of bacterial endophytes of Maize (Zea mays) and their functional potential for micronutrient biofortification. Curr Microbiol 79(1):1–4. https://doi.org/10.1007/s00284-021-02702-7

    Article  CAS  Google Scholar 

  • Vílchez JI, García-Fontana C, Román-Naranjo D, González-López J, Manzanera M (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577. https://doi.org/10.3389/fmicb.2016.01577

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015a) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31(1):95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M et al (2015b) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65(2):611–629

    Article  Google Scholar 

  • Yadav AN, Sharma D, Gulati S et al (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5(1):1–10

    Article  CAS  Google Scholar 

  • Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform 17(1):1–8

    Article  CAS  Google Scholar 

  • Yuan Y, Fang L, Karungo SK et al (2016) Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep 35:655–666. https://doi.org/10.1007/s00299-015-1910-x

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang W, Li Q et al (2020) Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria. Appl Environ Microbol 86(11):e02863-e2919

    Article  CAS  Google Scholar 

  • Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Can J Microbiol 64(4):253–264

    Article  CAS  PubMed  Google Scholar 

  • Zobell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:41–75

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau for financial assistance and infrastructural facilities provided during the work. This is a part of the Ph.D. work of the first author under supervision of the corresponding authors.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AKS contributed in conceptualization of the work. SD collected samples. SD carried out the isolation, characterization, and identification of bacteria. SD, SV, and PC compiled results and prepared first draft. AKS and RS supervised the study and edited the final draft and gave final approval of this version to be published. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rajni Singh or Anil Kumar Saxena.

Ethics declarations

Conflicts of interest/competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

13205_2022_3278_MOESM1_ESM.pdf

Supplementary Fig. 1 UPGMA dendrogram for gram positive bacterial isolates constructed based on restriction profiling using TaqI, HaeIII and RsaI restriction enzymes

13205_2022_3278_MOESM2_ESM.pdf

Supplementary Fig. 2 UPGMA dendrogram for gram negative bacterial isolates constructed based on restriction profiling using TaqI, HaeIII and RsaI restriction enzymes

Supplementary Fig. 3 Plant grown under in vitro conditions showing effects of microbial inoculation

Supplementary file3 (DOCX 15 KB)

Supplementary file4 (DOC 49 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Verma, S., Choudhary, P. et al. Deciphering the genetic and functional diversity of cultivable bacteria from chasmophytic pigweed (Chenopodium album) from Tsomoriri, Ladakh, India. 3 Biotech 12, 242 (2022). https://doi.org/10.1007/s13205-022-03278-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03278-0

Keywords

Navigation