Skip to main content
Log in

The role of seed-vectored endophytes in seedling development and establishment

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Seed-vectored endophytes internally colonize plant seeds and remain without eliciting disease symptoms. Microbes are carried by seeds generation after generation to benefit the host during and following seed germination. Seed-vectored endophytes have been poorly investigated and research targeted at understanding their biology will have immense applications in agriculture and horticulture. Some reports are available on the roles of seed endophytes in plant growth promotion via nutrient acquisition and biocontrol of soil borne diseases, but mechanisms of interaction at the endophyte-host interface, especially during seed germination and seedling establishment, have not been explored adequately. The present paper is intended to review the role of seed vectored endophytes in seed germination, seedlings development and in developing the rhizosphere community. The mechanisms of interaction and movement of seed inhabiting endophytic bacteria are explained with the help of pictorial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  PubMed  Google Scholar 

  • Bacilio-JimeÂnez M, Aguilar-Flores S, del Valle MV, PeÂrez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006) In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Austr J Bot 54:375–381

    Article  Google Scholar 

  • Beltrán-García MJ, White JF, Prado FM, Prieto KR, Yamaguchi LF, Torres MS, Kato MJ, Medeiros MHG, Di Mascio P (2014) Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep 4:6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Book  Google Scholar 

  • Bewleyl JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  Google Scholar 

  • Chen C, Twito S, Miller G (2014) New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds. Plant Signal Behav 9(12):e976489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2016) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9:57–77

    Article  CAS  Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853

    Article  CAS  PubMed  Google Scholar 

  • Gimeno-Gilles C, Lelièvre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A, Leduc N, Limami AM (2009) ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant 2:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes MP, Garcia QS (2013) Reactive oxygen species and seed germination. Biologia 68(3):351–357

    Article  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF (2015a) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helse Z, White JF Jr (2015b) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett App Microbiol 60:392–399

    Article  CAS  Google Scholar 

  • Gundel PE, Maseda PH, Ghersa CM, Benech-Arnold RL (2006) Effects of the Neotyphodium endophyte fungus on dormancy and germination rate of Lolium multiflorum seeds. Austral Ecol 31:767–775

    Article  Google Scholar 

  • Hardoim PR (2015) Heading to the origins – rice microbiome as functional extension of the host. J Rice Res 3:133

    Article  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186:37–43

    Article  CAS  Google Scholar 

  • Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M et al (2011) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6(4):e19220. https://doi.org/10.1371/journal.pone.0019220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, M. A. (2016) Probiotics for plants? What the PPFMs told us and some ideas about how to use them. Washington Academy of Sciences. J Wash Acad Sci 102: 31

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149

    Article  Google Scholar 

  • Huckelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plantmicrobe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    CAS  PubMed  Google Scholar 

  • Irizarry I, White JF (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol 122:1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Irizarry I, White JF (2018) Bacillus amyloliquefaciens alters gene expression, ROS production, and lignin synthesis in cotton seedling roots. J Appl Microbiol 124:1589–1603

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko MG, den Désirée O, Monhausen GB, Dubrovsky JG, Bednarova A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophyes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162

    Article  PubMed  Google Scholar 

  • Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8:10

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeno-Orillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp nov. Syst Appl Microbiol 33:322–327

    Article  PubMed  Google Scholar 

  • Masuhara G, Katsuya K (1989) Effects of mycorrhizal fungi on seed germination and early growth of three Japanese terrestrial orchids. Sci Hortic 37:331–337

    Article  Google Scholar 

  • McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid–fungus fidelity: a marriage meant to last? Ecol 87:903–911

    Article  Google Scholar 

  • Morre DJ, Brightman AO, Hidalgo A, Navas P (1995) Selective inhibition of auxin-stimulated NADH oxidase activity and elongation growth of soybean hypocotyls by thiol reagents. Plant Physiol 107:1285–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Data N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134:151–159

    Article  CAS  PubMed  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic Bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzrk S, Webb RI, Sagulenko E, Nasholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLOS ONE 5(7):e11915. https://doi.org/10.1371/journal.pone.0011915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne, C, Schmidt S, Webb R, Lonhienne T (2013) Rhizophagy- A new dimension of plant-microbe interactions, in de Briujn, F.J. (Ed.) Mol Microbial Ecol Rhizosphere 1: 1199–1207

  • Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in Quinoa: Omnipresent, robust Bacilli contribute to plant fitness. Front Microbiol 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Prieto KR, Echaide-Aquino F, Huerta-Robles A, Valerio HP, Macedo-Raygoza G, Prado FM, Medeiros M, Brito HF, da Silva I, Felinto MCF, White JF, Di Masci P, Beltran-Garcia M (2017) Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In: Hossain M, Kamiya T, Burritt D, Tram L-SP, Fujiwara T (eds) Plant Macronutrient Use Efficiency. Academic Press, Cambridge, MA, USA, pp 285–302

    Chapter  Google Scholar 

  • Puente ME, Lib CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Carmen Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Shearin ZRC, Filipek M, Desai R, Wesley A, Bickford KKP, Clay K (2018) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422:183–194

    Article  CAS  Google Scholar 

  • Soares MA, Li HY, Kowalski KP, Bergen M, Torres MS, White JF (2016) Functional roles of bacteria from invasive Phragmites australis in promotion of host growth. Microb Ecol 72(2):407–417

    Article  CAS  PubMed  Google Scholar 

  • Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167

    Article  CAS  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasion of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci U S A 94:5410–5415

    Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124:764–778

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF (2017) Seed vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 22:1680–1691

    Article  CAS  Google Scholar 

  • Verma SK, Kingsley K, Bergen M, English C, Elmore M, Kharwar RN, White JF (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422:223–238

    Article  CAS  Google Scholar 

  • Wäli PR, Helander M, Saloniemi I, Ahlholm J, Saikkonen K (2009) Variable effects of endophytic fungus on seedling establishment of fine fescues. Oecologia 159:49–57

    Article  PubMed  Google Scholar 

  • White JF, Crawford H, Torres MS, Mattera R, Irizarry I, Bergen M (2012) A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:161–171. https://doi.org/10.1007/s13199-012-0189-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573. https://doi.org/10.1002/jemt.22375

    Article  CAS  PubMed  Google Scholar 

  • White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M, Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7

  • White JF, Kingsley KI, Kowalski KP, Irizarry I, Micci A, Soares MA, Bergen MS (2018a) Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive seed grass (Phragmites australis). Plant Soil 422:195–208

    Article  CAS  Google Scholar 

  • White JF, Kingsley K, Harper CJ, Verma SK, Brindisi L, Chen Q, Chang X, Micci A, Bergen M (2018b) Reactive oxygen defense against cellular endoparasites and the origin of eukaryotes. In: Krings M, Harper CJ, Cuneo NR, Rothwell GW (eds) Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor. Elsevier, Amsterdam

    Google Scholar 

  • White JF, Torres MS, Verma SK, Elmore MT, Kowalski KP, Kingsley KL (2018c) Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: PGPR amelioration in sustainable agriculture: food security and environmental management (Eds. Kumar A, Singh A, Singh V), Elsevier

  • White JF, Kingsley KL, Verma SK, Kowalski KP (2018d) Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6:95. https://doi.org/10.3390/microorganisms6030095

    Article  PubMed Central  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of term, a classification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC, India for providing funds in the form of a startup grant (Project UGC-BSR-M-14-26). SKV and RNK thank the Head and Coordinator of CAS, DST PURSE, FIST of Botany, B.H.U., Varanasi. SKV acknowledges the financial support from ISLS, BHU under UGC-UPE FA-II. The authors are also grateful for support from USDA-NIFA Multistate Project W3157, and the New Jersey Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satish K. Verma or James F. White.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Kharwar, R.N. & White, J.F. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis 78, 107–113 (2019). https://doi.org/10.1007/s13199-019-00619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00619-1

Keywords

Navigation