Skip to main content
Log in

Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Leersia oryzoides, a wild relative of rice (Oryza sativa), may carry potential seed-borne bacterial endophytes which could be used to enhance growth of rice. We hypothesized that seed-associated bacteria from L. oryzoides would be compatible with rice and promote seedling growth, development, and survival.

Methods

We isolated bacteria from seed of L. oryzoides and checked compatibility with rice as well as Bermuda grass seeds for seedling growth promotion. Internal colonisation of bacteria into root cells was observed by ROS staining and microscopic observation. Growth promoting bacteria were evaluated for IAA production, phosphate solubilization and antifungal activities.

Results

Overall, ten bacteria were found to be growth promoting in rice seedlings with effects including restoration of root gravitropic response, increased root and shoot growth, and stimulation of root hair formation. All bacteria were identified by 16S rDNA sequencing. Six bacteria were found to become intracellular in root parenchyma and root hairs in rice and in Bermuda grass seedlings. Six bacteria were able to produce IAA in LB broth with highest (47.06 ± 1.99 μg ml−1) by LTE3 (Pantoea hericii). Nine isolates solubilized phosphate and inhibited at least one soil borne fungal pathogen.

Conclusions

Seed bacteria of L. oryzoides are compatible with rice. Many of these bacteria become intracellular, induce root gravitropic response, increase root and shoot growth, and stimulate root hair formation in both rice and Bermuda grass seedlings. Presence of bacteria protects seedlings from soil pathogens during seedling establishment. This research suggests that bioprospecting microbes on near relatives of rice and other crop plants may be a viable strategy to obtain microbes to improve cultivation of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan EJ, Hoischen C, Gumpert J (2009) Bacterial L-forms. Adv Appl Microbiol Elsevier Inc 68:1–39. doi:10.1016/S0065-2164(09)01201-5

    Article  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman M, Rai RV (2016) Antifungal activity of novel indole derivative from endophytic bacteria Pantoea ananatis 4G-9 against Mycosphaerella musicola. Biocontrol Sci Tech 26(4):476–491

    Article  Google Scholar 

  • Amijee F, Allan EJ, Waterhouse RN, Glover LA, Paton AM (1992) Nonpathogenic association of L-form bacteria (Pseudomonas syringae pv. phaseolicola) with bean plants (Phaseolus vulgaris L.) and its potential for biocontrol of halo blight. Biocontrol Sci Tech 2:203–214

    Article  Google Scholar 

  • Bacilio-JimeÂnez M, Aguilar-Flores S, del Valle MV, PeÂrez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172

    Article  Google Scholar 

  • Beltran-Garcia M, White JF, Prado FM, Prieto KR, Yamaguchi LF, Torres MS, Kato MJ, Medeiros MHG, Di Mascio P (2014) Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep 4:6938. doi:10.1038/srep06938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E, Chanway CP (1998) The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Can J Microbiol 44:980–988

    Article  CAS  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Cooper CM (2004) Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environ Pollut 132:403–411

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Vijayakumar P, Dolan L (2011) Root hairs: development, growth and evolution at the plant-soil interface. Plant Soil 346:1–14

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Guo Y, Zhu Q (2004) Molecular phylogeny and divergence of the rice tribe oryzeae with special reference to the origin of the genus Oryza. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. Proceeding of the world rice research conference, IRRI and Japan international research Center for Agriculture Science, pp 40–43

  • Gond SK, Bergen MS, Torres MS, White JF (2015a) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helse Z, JFJr W (2015b) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26(1):192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2). doi:10.1371/journal.pone.0030438

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43

    Article  Google Scholar 

  • Hogh-Jensen H, Pedersen M (2003) Morphological plasticity by crop plants and their potassium use efficiency. J Plant Nutr 26:969–984

    Article  CAS  Google Scholar 

  • Huckelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plant microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    CAS  PubMed  Google Scholar 

  • Irizarry I, White JF (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol. doi:10.1111/jam.13414

  • Ivanchenko MG, Desireeden O, Monhausen GB, Dubrovsky JG, Bednarova A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot. doi:10.1093/aob/mct181 www.aob.oxfordjournals.org

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophyes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6). doi:10.1371/journal.pone.0020396

  • Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24(2):154–162

    Article  PubMed  Google Scholar 

  • Kijne JW (1992) The Rhizobium infection process. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 349–398

    Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav. doi:10.4161/psb.25761

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb CJ (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702. doi:10.1371/journal.pone.0002702

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361:301–306

    Article  CAS  Google Scholar 

  • Miller SH, Browne P, Prigent-Cambaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilisation in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers J, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci 108(20):8351. doi:10.1073/pnas.1104686108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morre DJ, Brightman AO, Hidalgo A, Navas P (1995) Selective inhibition of auxin-stimulated NADH oxidase activity and elongation growth of soybean hypocotyls by thiol reagents. Plant Physiol 107:1285–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler J, Keyes SD, Wissuwa M (2016) Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions. J Exp Bot 67:3699–3708

    Article  CAS  PubMed  Google Scholar 

  • Norsworthy JK, Scott RC, Smith KL, Still J, Meier J (2009) Herbicide options for rice cutgrass (Leersia oryzoides) control. Weed Technol 23:1–5

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. doi:10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  • Paungfoo-Lonhienne C, Schmidt S, Webb R, Lonhienne T (2013) Rhizophagy- a new dimension of plant-microbe interactions, in de Briujn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley-Blackwell. Pub John Wiley & Sons, Inc

  • Pierce SC, Moore MT, Larsen D, Pezeshki SR (2010) Macronutrient (N, P, K) and redoximorphic metal (Fe, Mn) allocation in Leersia oryzoides (rice cutgrass) grown under different flood regimes. Water Air Soil Pollut 207:73–84

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González M, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W (2016) The regulation and plasticity of root hair patterning and morphogenesis. Development 143:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin JT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. PNAS 112(36):E5013–E5020. doi:10.1073/pnas.1505765112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sørensen J, Sessitsch A (2006) Plant-associated bacteria lifestyle and molecular interactions. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC press, pp 211–236

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Vaughan DA (1994) The relationship between the genus Oryza and other grasses. In: The wild relative of rice: a genetic resources hand book. IRRI, Manila, pp 3–6

    Google Scholar 

  • Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF (2017) Seed vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 22:1680–1691

    Article  Google Scholar 

  • Walker R, Ferguson CMJ, Booth NA, Allan EJ (2002) The symbiosis of Bacillus subtilis L-forms with Chinese cabbage seedlings inhibits conidial germination of Botrytis cinerea. Lett Appl Microbiol 34:42–45

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • White JF, Torres MS, Sullivan RF, Jabbour RE, Chen Q, Tadych M, et al (2014a) Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microsc Res Tech doi:10.1002/jemt.22410

  • White JF Jr, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M (2014b) Hydrogen peroxide staining to visualize bacterial infections of seedling root cells. Microsc Res Tech 77:566–573

    Article  CAS  PubMed  Google Scholar 

  • White JF, Chen Q, Torres MS, Mattera R, Irizarry I, Tadych M Bergen M (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB Plants 7. doi:10.1093/aobpla/plu093

  • White JF, Kingsley KI, Kowalski KP, et al (2017) Disease protection and allelopathic interactions of seed-transmitted endophytic Pseudomonads of invasive seed grass (Phragmites australis). Plant Soil doi:10.1007/s11104-016-3169-6

Download references

Acknowledgements

The authors are thankful to the Department of Plant Biology, Rutgers University, NJ for use of research facilities. SKV is thankful to UGC, India for providing a Raman Post Doctoral fellowship (No.-F 5-11/2016 IC) for the year (2015-16) to research in USA. SKV and RNK thank the Head and Coordinator CAS, FIST of Botany, B.H.U., Varanasi, India for providing facilities and leave to pursue research on endophytes. The authors are also thankful for support from the John E. and Christina C. Craighead Foundation, USDA-NIFA Multistate Project W3147, the Rutgers Turf Grass Research Center, and the New Jersey Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satish K. Verma or James F. White.

Additional information

Responsible editor: Stéphane Compant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S.K., Kingsley, K., Bergen, M. et al. Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422, 223–238 (2018). https://doi.org/10.1007/s11104-017-3339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3339-1

Keywords

Navigation