Skip to main content
Log in

Mycorrhizal-induced growth depression in plants

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

As plant mutualists, one would not expect arbuscular mycorrhizal fungi (AMF) to cause growth depression of their host plants. The mechanism responsible for negative effects of AMF is still debated and so here we review the possible abiotic and biotic reasons for AMF-induced growth depression in plants: 1) The Phytocentric explanations, include: a) AMF and non-mycotrophic plants, b) different growth stages of plants. 2) The Mycocentric explanations, include: a) Low effective AMF species, b) The existence of vesicles, c) Genetic variability of AMF, and d) Geographic origin of AMF. 3) Unbalanced C-for-nutrient-trade, involving both partners and 4) Indirect effects of other organisms. We note deficiencies in previous studies and suggest improvements in experimental designs such as the use of realistic mixtures of AM fungal species, and growing plants in mixtures in field situations, rather than single pot studies, with and without fungi. Determining whether and how AM fungi cheat on their hosts will enable a better understanding of their roles in natural communities and their use as biofertilizers in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aghili F, Jansa J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, Frossard E, Gamper HA (2014) Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Appl Soil Ecol 84:93–111

    Article  Google Scholar 

  • Allsopp N, Stock WD (1992) Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia 91:281–287

    Article  CAS  PubMed  Google Scholar 

  • Antunes PM, Koch A, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Ayres RL, Gange AC, Aplin DM (2006) Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size, and size inequality, of Plantago lanceolata L. J Ecol 94:285–294

    Article  Google Scholar 

  • Barber NA, Kiers ET, Hazzard RV, Adler LS (2013) Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem. Front Plant Sci 4:1–10

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Front Microbiol 6:1559. doi:10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Burke DJ (2012) Shared mycorrhizal networks of forest herbs: does the presence of conspecific and heterospecific adult plants affect seedling growth and nutrient acquisition? Botany 90:1048–1057

    Article  Google Scholar 

  • Burrows RL, Pfleger FL (2002) Host responses to AMF from plots differing in plant diversity. Plant Soil 240:169–179

    Article  CAS  Google Scholar 

  • Cattani I, Beone GM, Gonnelli C (2015) Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zea mays L.) cultivated on an arsenic-contaminated soil. Environ Sci Pollut Res 22:6570–6577

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Boughattas S, Hu SJ, Oh SJ, Sa TM (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 8:611–625

    Article  Google Scholar 

  • Correa A, Cruz C, Pérez-Tienda J, Ferrol N (2014) Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Plant Sci 221:29–41

    Article  PubMed  Google Scholar 

  • Correa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499–515

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Hamel C, Bainard LD, St. Arnaud M, Grant CA, Lupwayi NZ, Malhi SS, Lemke R (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166

    Article  CAS  Google Scholar 

  • Daisog H, Sbrana C, Cristiani C, Moonen AC, Giovanetti M, Barberi P (2012) Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant Soil 353:395–408

    Article  CAS  Google Scholar 

  • Davison J, Opik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol 78:103–115

    Article  CAS  PubMed  Google Scholar 

  • de Novais CB, Borges WL, Jesus EC, Júnior OJS, Siqueira JO (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86

    Article  Google Scholar 

  • Del Fabbro C, Prati D (2014) Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl Ecol 15:534–542

    Article  Google Scholar 

  • Faye A, Dalpe Y, Ndung'u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Can J Plant Sci 93:1201–1208

    Article  Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • García I, Mendoza R, Pomar MC (2008) Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant Soil 304:117–131

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JH (2000) Assessing costs of arbuscular mycorrhizal symbiosis in agroecosystems. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, pp. 127–140

    Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Hart MM, Forsythe J, Oshowski B, Bücking H, Jansa J, Kiers ET (2013) Hiding in a crowd - does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis 59:47–56

    Article  Google Scholar 

  • Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331

    Article  CAS  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol. Biotech 97:8859–8873

    CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1990) Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil microorganisms. Can J Bot 68:461–467

    Article  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214

    Article  PubMed  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Holland JN (2015) Population ecology of mutualism. In: Bronstein JL (ed) Mutualism. Oxford University Press, Oxford, pp. 133–158

    Chapter  Google Scholar 

  • Janos DP (1985) Mycorrhizal fungi: agents or symptoms of tropical community composition. In: Molina R (ed) Proceedings of the 6th North American Conference on mycorrhizae. Oregon State University, Corvallis, pp 98–103

  • Janos DP (1987) VA mycorrhizas in humid tropical ecosystems. In: Safir G (ed) VA mycorrhizae: an ecophysiological approach. CRC Press, Boca Raton, pp. 107–134

    Google Scholar 

  • Janos DP (1996) Mycorrhizas, succession, and the rehabilitation of deforested lands in the humid tropics. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp. 129–162

    Chapter  Google Scholar 

  • Janoušková M, Rydlová J, Püschel D, Száková J, Vosátka M (2011) Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 21:641–650

    Article  PubMed  Google Scholar 

  • Jin L, Zhang GQ, Wang XJ, Dou CY, Chen M, Lin SS, Li YY (2011) Arbuscular mycorrhiza regulate inter-specific competition between a poisonous plant, Ligularia virgaurea, and a co-existing grazing grass, Elymus nutans, in Tibetan Plateau Alpine meadow ecosystem. Symbiosis 55:29–38

    Article  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  PubMed  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci U S A 107:2093–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EI, Afkhami ME, Bronstein JL, Bshary R, Fredericksen ME, Heath KD, Hoeksema JD, Ness JH, Sabrina Pankey M, Porter SS, Sachs JL, Scharnagl K, Friesen ML (2015) Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol Lett 18:1270–1284

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci U S A 101:2369–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110

    Article  PubMed  Google Scholar 

  • Koide RT, Dickie IA (2002) Effects of mycorrhizal fungi on plant populations. Plant Soil 244:307–317

    Article  CAS  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game? Plant Cell Environ 36:1911–1915

    PubMed  Google Scholar 

  • Li Y (2007) Studies on spore germination and presymbiotic growth of AMF. Thesis for Master’s Degree. Wuhan: Huazhong Agricultural University

  • Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487. doi:10.3389/fpls.2016.00487

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariotte P, Meugnier C, Johnson D, Thébault A, Spiegelberger T, Buttler A (2013) Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza 23:267–277

    Article  PubMed  Google Scholar 

  • McArthur DAY, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora-Romero GA, Cervantes-Gamez RG, Galindo-Flores H, Gonzalez-Ortiz MA, Felix-Gastelum R, Maldonado-Mendoza IE, Perez RS, Leon-Felix J, Martinez-Valuenzuela MC, Lopez-Meyer M (2015) Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66:55–64

    Article  CAS  Google Scholar 

  • Mummey DL, Antunes PM, Rilllig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179

    Article  CAS  Google Scholar 

  • Partída-Martinez LP, Heil M (2011) The microbe-free plant: factor artifact? Front Plant Sci 2:1–16

    Article  Google Scholar 

  • Reinhard S, Martin P, Marschner H (1993) Interactions in the tripartite symbiosis of pea (Pisum sativum L.), Glomus and Rhizobium under non-limiting phosphorus supply. J Plant Physiol 141:7–11

    Article  CAS  Google Scholar 

  • Robinson Boyer L, Brain P, XM X, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227

    Article  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  • Smith FA, Smith SE (1996) Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv Bot Res 22:1–43

    Article  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Ann Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Song FQ, Song G, Dong AR, Kong XS (2011) Regulatory mechanisms of host plant defense responses to arbuscular mycorrhiza. Acta Ecol Sin 31:322–327

    Article  Google Scholar 

  • Stonor RN, Smith SE, Manjarrez M, Facelli E, Smith FA (2014) Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza 24:465–472

    Article  CAS  PubMed  Google Scholar 

  • Techapinyawat S, Pakkong P, Suwanarit P, Sumthong P (2002) Effects of arbuscular mycorrhiza and phosphate fertilizer on phosphorus uptake of vetiver using nuclear technique. Kasetsart J (Nat Sci) 36:381–391

    Google Scholar 

  • Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities - marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232

    Article  CAS  PubMed  Google Scholar 

  • Treseder K (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    Article  CAS  Google Scholar 

  • Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J, Waldrop MP (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18

    Article  CAS  Google Scholar 

  • Ueda K, Tawaraya K, Murayama H, Sato S, Nishizawa T, Toyomasu T, Murayama T, Shiozawa S, Yasuda H (2013) Effects of arbuscular mycorrhizal fungi on the abundance of foliar-feeding insects and their natural enemy. Appl Entomol Zool 48:79–85

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CMJ, Bonfante P, van der Heijden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937

    PubMed  Google Scholar 

  • Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T (1996) Resistance of Urtica dioica to mycorrhizal colonization: A possible involvement of Urtica dioica agglutinin. Plant Soil 183:131–136

    Article  CAS  Google Scholar 

  • Wagg C, Antunes PM, Peterson RL (2011) Arbuscular mycorrhizal fungal phylogeny-related interactions with a non-host. Symbiosis 53:41–46

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Watkinson AR, Freckleton RP (1997) Quantifying the impact of arbuscular mycorrhiza on plant competition. J Ecol 85:541–545

    Article  Google Scholar 

  • Werner GDA, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442

    Article  PubMed  Google Scholar 

  • Williams A, Ridgway HJ, Norton DA (2013) Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New For 44:183–195

    Article  Google Scholar 

  • Yang HS, Dai YJ, Wang XH, Zhang Q, Zhu LQ, Bian XM (2014) Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. Sci World J 746506. doi:10.1155/2014/746506

  • Youpensuk S, Rerkasem B, Dell B, Lumyong S (2005) Effects of arbuscular mycorrhizal fungi on a fallow enriching tree (Macaranga denticulata. Fungal Divers 18:189–199

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (31270558) and the Research Funds for the Introduction of Talents of Shanghai Science and Technology Museum. We are grateful to the anonymous referees whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Wang, Q., Wang, Q. et al. Mycorrhizal-induced growth depression in plants. Symbiosis 72, 81–88 (2017). https://doi.org/10.1007/s13199-016-0444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0444-5

Keywords

Navigation