Skip to main content
Log in

Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana

  • Regular Article
  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The herb Stevia rebaudiana Bertoni is an important sugar substitute due to the presence of steviol glycosides-mainly stevioside and rebaudioside-A. These compounds possess antioxidant activity with industrial importance. The fungus Piriformospora indica has been used to improve medicinally important biomolecules, growth and secondary metabolite content in plants. The soil bacterium Azotobacter chroococcum has also been reported to possess plant growth promoting ability. The present study was undertaken to test the ability of P. indica (Pi) and A. chroococcum (Az), alone and in combination to improve the growth, antioxidant activity and steviol glycoside (SG) content of in vitro S. rebaudiana plantlets. Inoculation with Pi or Az alone showed enhancement in all these characters compared with non-inoculated plantlets. Combined inoculation with Pi and Az further enhanced these traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

PGPR:

plant growth promoting rhizobacteria

AMF:

arbuscular mycorrhizal fungi

MS medium:

Murashige and Skoog medium

BAP:

6-benzyl aminopurine

Kn:

kinetin

IAA:

indole-3-acetic acid

DPPH:

1,1- diphenyl-2-picryl hydrazyl

PiPT:

P. indica-phosphate transporter

SGs:

steviol glycosides

ABA:

abscisic acid

GA:

gibberellic acid

ROS:

reactive oxygen species

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian thar desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Biermann B, Linderman RG (1981) Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Brandle JE, Telmer PG (2007) Steviol glycoside biosynthesis. Phytochemistry 68:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Brandle JE, Starratt AN, Gijzen M (1998) Stevia rebaudiana: its agricultural, biological, and chemical properties. Can J Plant Sci 78:527–536

    Article  CAS  Google Scholar 

  • Chatsudthipong V, Muanprasat C (2009) Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol Ther 121:41–54

    Article  CAS  PubMed  Google Scholar 

  • Das K, Dang R, Shivananda TN (2006) Effect of N, P and K fertilizers on their availability in soil in relation to the stevia plant (Stevia rebaudiana bert.). Arch Agr Soil Sci 52:6792–6850

    Google Scholar 

  • Das K, Dang R, Shivananda TN (2008) Influence of bio-fertilizers on the availability of nutrients (N, P and K) in soil in relation to growth and yield of Stevia rebaudiana grown in south India. Inter J Appl Res Nat Prod 1:20–24

    CAS  Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Garg G, Adams JD (2012) Treatment of neuropathic pain with plant medicines. Chin J Integr Med 18:565–570

    Article  PubMed  Google Scholar 

  • Gryndler M, Hršelová H, Stříteská D (2000) Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiol (Praha) 45:545–551

    Article  CAS  Google Scholar 

  • Industry ARC (2014) http://industryarc.com/Report/103/stevia-food-beverages-market.html. Accessed 09 January 2015

  • Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7:e35502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khatoon M, Islam E, Islam R, Rahman AA, Alam AK, Khondkar P, Rashid M, Parvin S (2013) Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Res Notes 6:1–7

    Article  Google Scholar 

  • Kim N, Kinghorn AD (2002) Highly sweet compounds of plant origin. Arch Pharm Res 25:725–746

    Article  CAS  PubMed  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2007) Interaction between a PGPR, an AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487

    Article  Google Scholar 

  • Kumar M, Yadav V, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma S, Mishra S (2015) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, (ahead-of-print), 1–9

  • McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    Article  CAS  Google Scholar 

  • Mitra A, Pal A (2007) In vitro regeneration of Stevia rebaudiana (bert) from the nodal explant. J Plant Biochem Biotechnol 16:59–62

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pham GH, Kumari R, Singh A, Malla R, Prasad R, Sachdev M, Varma A, et al. (2004) Axenic culture of symbiotic fungus Piriformospora indica. In Plant Surface Microbiology. Springer-Verlag, Berlin Heidelberg, pp. 593–613

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN18

    Article  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ren GX, Liu XY, Shi Y (2011) Effects of plant growth regulator S-Y on diurnal changes in photosynthetic parameters and yield of Stevia rebaudiana bertoni. Energy Procedia 5:429–434

    Article  Google Scholar 

  • Saifi M, Ali A, Saini M, Nasrullah N, Khan S, Abdin M (2014) A rapid and efficient high performance thin layer chromatographic (HPTLC) method for simultaneous analysis of stevioside and rebaudioside-a in Stevia rebaudiana. Int J Pharm Pharm Sci 6:465–470

    Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    Article  CAS  PubMed  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U (2009) Phytohormones in plant root-Piriformospora indica mutualism. Plant Signal Behav 4:669–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  PubMed  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  PubMed  Google Scholar 

  • Sreeramulu KR, Hanumanthappa M, Gowda A, Kalyana KN, Jayasheela N (2000) Dual inoculation of Azotobacter chroococcum and Glomus fasciculatum improves growth and yield of sunflower under field conditions and saves N and P fertilizer application. Environ Ecol 18:380–384

    Google Scholar 

  • Suneja S, Narula N, Anand RC, Lakshminarayan K (1996) Relation of Azotobacter chroococcum siderophores with nitrogen fixation. Folia Microbiol (Praha) 41:154–158

    Article  CAS  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interact 9:128–136

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sudha S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waller F, Achatz FB, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CIMAP, Pantnagar, Uttarakhand, for providing stem cuttings of S. rebaudiana and to the Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India for providing the A. chroococcum (W5) strain. We also thank ICAR for financial assistance to the first author. The help extended by Dr. Ginette Seguin Swartz, former scientist, Agriculture and Agri- Food Canada Research Station, Saskatoon, Canada and Dr. DK Choudhary, AIMT, Amity University for manuscript correction and constructive suggestions to finalize the manuscript is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Agnihotri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilam, D., Saifi, M., Abdin, M.Z. et al. Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana . Symbiosis 66, 149–156 (2015). https://doi.org/10.1007/s13199-015-0347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0347-x

Keywords

Navigation