Skip to main content
Log in

Identification of peptides, metal binding and lipid peroxidation activities of HPLC fractions of hydrolyzed oat bran proteins

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate metal binding and antioxidant activities of hydrolyzed oat bran proteins followed by the determination of peptide sequences. Protamex oat bran protein hydrolysates (OBPH) were separated by reverse-phase HPLC into eight peptide fractions (F1–F8) and their abilities to either chelate metals (Fe2+, Ca2+) or prevent the oxidation of lipids were investigated. In the Fe2+ chelation assay, OBPH had significantly (p < 0.05) higher activity (39.7 %) than the best performed fraction F7 (22.8 %). The second most active was F5 with 12.1 % chelating activity and this was higher than the activity of the tripeptide glutathione (5.8 %) used as control. The two most Fe2+ chelating fractions (F5, F7) however had weak calcium binding (0.6–1.0 %) properties at peptide concentration ranging from 0.2 to 1.0 mg/mL. In the lipid peroxidation assay, OBPH and all HPLC fractions prevented the oxidation of linoleic acid. More than 60 peptides mainly derived from globulin and avenin proteins were identified using tandem mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao XL, Song M, Zhang J et al (2007) Calcium-binding ability of soy protein hydrolysates. Chin Chem Lett 18:1115–1118

    Article  CAS  Google Scholar 

  • Brieger K, Schiavone S, Miller FJ, Krause K-H (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659. doi:10.4414/smw.2012.13659

    CAS  Google Scholar 

  • Cariolou MA, Morse DE (1988) Purification and characterization of calcium-binding conchiolin shell peptides from the mollusc, Haliotis rufescens, as a function of development. J Comp Physiol B 157:717–729. doi:10.1007/BF00691002

    Article  CAS  Google Scholar 

  • Chang Y-W, Alli I, Konishi Y, Ziomek E (2011) Characterization of protein fractions from chickpea (Cicer arietinum L.) and oat (Avena sativa L.) seeds using proteomic techniques. Food Res Int 44:3094–3104. doi:10.1016/j.foodres.2011.08.001

    CAS  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F et al (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46:49–53. doi:10.1021/jf970649w

    Article  CAS  Google Scholar 

  • Chen N, Yang H, Sun Y et al (2012) Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 38:344–349

    Article  CAS  Google Scholar 

  • Chen D, Mu X, Huang H et al (2014) Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J Funct Foods 6:575–584

    Article  CAS  Google Scholar 

  • Gao Q, Smith JC, Tsopmo A (2014) Optimized Protamex digested oat bran proteins: antioxidant properties and identification of new peptides. Austin J Nutr Food Sci 2:1053

    Google Scholar 

  • Girgih AT, Udenigwe CC, Hasan FM et al (2013) Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Res Int 52:315–322

    Article  CAS  Google Scholar 

  • He X, Cao W, Zhao Z, Zhang C (2013) Analysis of protein composition and antioxidant activity of hydrolysates from Paphia undulate. J Food Nutr Res 1:30–36. doi:10.12691/jfnr-1-3-3

    Google Scholar 

  • Hu FB, Willett WC (2002) Optimal diets for prevention of coronary heart disease. JAMA 288:2569–2578

    Article  CAS  Google Scholar 

  • Jiang B, Mine Y (2000) Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin. J Agric Food Chem 48:990–994

    Article  CAS  Google Scholar 

  • Jodayree S, Smith JC, Tsopmo A (2012) Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Res Int 46:69–75. doi:10.1016/j.foodres.2011.12.004

    Article  CAS  Google Scholar 

  • Jung WK, Kim S-K (2007) Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. Eur Food Res Technol 224:763–767. doi:10.1007/s00217-006-0371-4

    Article  CAS  Google Scholar 

  • Jung WK, Karawita R, Heo SJ et al (2006) Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem 41:2097–2100

    Article  Google Scholar 

  • Kumar S (2011) Free radicals and antioxidants: human and food system. Adv Appl Sci Res 2:129–135

    Google Scholar 

  • Lehtinen P, Kiiliainen K, Lehtomaki K, Laakso S (2003) Effect of heat treatment on lipid stability in processed oats. J Cereal Sci 37:215–221. doi:10.1006/jcrs.2002.0496

    Article  CAS  Google Scholar 

  • Liu F-R, Wang L, Wang R, Chen Z-X (2013) Calcium-binding capacity of wheat germ protein hydrolysate and characterization of peptide-calcium complex. J Agric Food Chem 61:7537–7544. doi:10.1021/jf401868z

    Article  CAS  Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) Modification of Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210. doi:10.1016/0003-2697(78)90586-9

    Article  CAS  Google Scholar 

  • McDermott A (2009) Bioactive peptides. Springer Science & Business Media, New York

    Google Scholar 

  • Meisel H (2004) Multifunctional peptides encrypted in milk proteins. BioFactors 21:55–61

    Article  CAS  Google Scholar 

  • Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165:638–647. doi:10.1016/j.chemphyslip.2012.05.003

    Article  CAS  Google Scholar 

  • Prior R, Wu X, Kschaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4302

    Article  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  Google Scholar 

  • Rho SJ, Park S, Ahn C-W et al (2007) Dietetic and hypocholesterolaemic action of black soy peptide in dietary obese rats. J Sci Food Agric 87:908–913. doi:10.1002/jsfa.2808

    Article  CAS  Google Scholar 

  • Schneider CD, Reischak de Oliveira A (2009) Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Rev Bras Med Esporte 10:314–318

    Google Scholar 

  • Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10:1265–1269. doi:10.1002/pmic.200900437

    Article  CAS  Google Scholar 

  • Shahidi F, Zhong Y (2010) Lipid oxidation and improving the oxidative stability. Chem Soc Rev 39:4067–4079

    Article  CAS  Google Scholar 

  • Vavrusova M, Skibsted LH (2013) Calcium binding to dipeptides of aspartate and glutamate in comparison with orthophosphoserine. J Agric Food Chem 61:5380–5384. doi:10.1021/jf400741e

    Article  CAS  Google Scholar 

  • Xie Z, Huang J, Xu X et al (2008) Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem 111:370–376

    Article  CAS  Google Scholar 

  • Zhu K, Zhou H, Qian H (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem 41:1296–1302. doi:10.1016/j.procbio.2005.12.029

    Article  CAS  Google Scholar 

  • Zhu L, Chen J, Tang X et al (2008) Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem 56:2714–2721. doi:10.1021/jf703697e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from National Science and Engineering Research Council of Canada (Grant No. 371908) and a Saudi Arabia government’s King Abdulah Foreign Scholarship to M. M. Baakdah. The authors thank Mr. Daniel Defoy from the Quebec Proteomics Platform available at the Quebec Genomics Center for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apollinaire Tsopmo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baakdah, M.M., Tsopmo, A. Identification of peptides, metal binding and lipid peroxidation activities of HPLC fractions of hydrolyzed oat bran proteins. J Food Sci Technol 53, 3593–3601 (2016). https://doi.org/10.1007/s13197-016-2341-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2341-6

Keywords

Navigation