Skip to main content
Log in

The optimum conditions for the extraction of antioxidant compounds from the Persian gulf green algae (Chaetomorpha sp.) using response surface methodology

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The potential of antioxidant activity of the green algae (Chaetomorpha sp.) was studied in this work. The optimum processing conditions for the extraction of antioxidant compounds from dried green algae were determined using response surface methodology (RSM). A central composite design (CCD) was applied to determine the effects of three process variables as follows: solvent concentration (percent), extraction time (min) and microwave power (w) on total phenolic contents, ferric reducing power, 2’2-dipheny-l-picrylhydrazyl (DPPH) radical scavenging activity and total antioxidant capacity assays. The independent variables were coded at five levels and CCD included 20 experimental runs with six replications at the center point. The statistical analysis of data was performed using design expert software and second-order polynomial models generated after analysis of variance (ANOVA) applied for predicting the responses. The results revealed that the highest total phenol content and reducing power were 1.09 and 0.12 mg of tannic acid equivalent/g dry weight, respectively. The maximum antioxidant activity was 0.19 mg ascorbic acid equivalent/g dry weight and DPPH was 99.8 % under MAE. The optimum conditions using RSM for the predicted responses were: microwave power 300 W, extraction time 8 min and solvent concentration 25 %, respectively. Furthermore the actual experimental values were adjacent to the corresponding predicted values which demonstrated fitness of the employed models and suitability of RSM in extraction parameters optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MAE:

as microwave assisted-extraction

RSM:

as response surface methodology

TPC:

as total phenol content

FRAP:

as ferric reducing power

TAC:

as total antioxidant capacity

References

  • Airanthi MKW-A, Hosokawa M, Miyashita K (2011) Comparative antioxidant activity of edible japanese brown seaweeds. J Food Sci 76(1):C104–C111. doi:10.1111/j.1750-3841.2010.01915.x

    Article  Google Scholar 

  • Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120(4):1185–1192

    Article  CAS  Google Scholar 

  • Blanc N, Hauchard D, Audibert L, Ar Gall E (2011) Radical-scavenging capacity of phenol fractions in the brown seaweed ascophyllum nodosum: an electrochemical approach. Talanta 84(2):513–518

    Article  CAS  Google Scholar 

  • Bonny S, Hitti E, Boustie J, Bernard A, Tomasi S (2009) Optimization of a microwave-assisted extraction of secondary metabolites from crustose lichens with quantitative spectrophotodensitometry analysis. J Chromatogr A 1216(45):7651–7656. doi:10.1016/j.chroma.2009.09.009

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. doi:10.1016/s0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  • Camel V (2000) Microwave-assisted solvent extraction of environmental samples. TrAC Trends Anal Chem 19(4):229–248. doi:10.1016/S0165-9936(99)00185-5

    Article  CAS  Google Scholar 

  • Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT Food Sci Technol 41(6):1067–1072. doi:10.1016/j.lwt.2007.06.013

    Article  CAS  Google Scholar 

  • Duan X-J, Zhang W-W, Li X-M, Wang B-G (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 95(1):37–43. doi:10.1016/j.foodchem.2004.12.015

    Article  CAS  Google Scholar 

  • Fan D, Hodges DM, Zhang J, Kirby CW, Ji X, Locke SJ, Critchley AT, Prithiviraj B (2011) Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem 124(1):195–202

    Article  CAS  Google Scholar 

  • Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99(8):2717–2723. doi:10.1016/j.biortech.2007.07.005

    Article  CAS  Google Scholar 

  • Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70(1):63–70

    Article  CAS  Google Scholar 

  • Huang W, Xue A, Niu H, Jia Z, Wang J (2009) Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem 114(3):1147–1154. doi:10.1016/j.foodchem.2008.10.079

    Article  CAS  Google Scholar 

  • Krishnaswamy, K., Orsat, V., Gariépy, Y., Thangavel, K. (2012) Optimization of Microwave-Assisted Extraction of Phenolic Antioxidants from Grape Seeds (Vitis vinifera). Food bioprocess tech :1–15

  • Kumar KS, Ganesan K, Rao PVS (2008) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty - An edible seaweed. Food Chem 107(1):289–295. doi:10.1016/j.foodchem.2007.08.016

    Article  CAS  Google Scholar 

  • Li Y, Qian Z-J, Ryu B, Lee S-H, Kim M-M, Kim S-K (2009) Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17(5):1963–1973. doi:10.1016/j.bmc.2009.01.031

    Article  CAS  Google Scholar 

  • Li H, Deng Z, Wu T, Liu R, Loewen S, Tsao R (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130(4):928–936

    Article  CAS  Google Scholar 

  • Liu J-L, Yuan J-F, Zhang Z-Q (2010) Microwave-assisted extraction optimised with response surface methodology and antioxidant activity of polyphenols from hawthorn (Crataegus pinnatifida Bge.) fruit. Int J Food Sci Technol 45(11):2400–2406. doi:10.1111/j.1365-2621.2010.02416

    Article  CAS  Google Scholar 

  • Matanjun P, Mohamed S, Mustapha N, Muhammad K, Ming C (2008) Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20(4):367–373. doi:10.1007/s10811-007-9264-6

    Article  CAS  Google Scholar 

  • Pan Xuejun NG, Huizhou L (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42:129/133

    Google Scholar 

  • Pan Y, Wang K, Huang S, Wang H, Mu X, He C, Ji X, Zhang J, Huang F (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan) peel. Food Chem 106(3):1264–1270

    Article  CAS  Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S (2011) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour Technol 102(2):1399–1405. doi:10.1016/j.biortech.2010.09.046

    Article  CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269(2):337–341. doi:10.1006/abio.1999.4019

    Article  CAS  Google Scholar 

  • Proestos C, Komaitis M (2008) Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci Technol 41(4):652–659. doi:10.1016/j.lwt.2007.04.013

    Article  CAS  Google Scholar 

  • Rodríguez-Bernaldo de Quirós A, Frecha-Ferreiro S, Vidal-Pérez A, López-Hernández J (2010) Antioxidant compounds in edible brown seaweeds. Eur Food Res Technol 231(3):495–498. doi:10.1007/s00217-010-1295-6

    Article  Google Scholar 

  • Souza BWS, Cerqueira MA, Martins JT, Quintas MAC, Ferreira ACS, Teixeira JA, Vicente AA (2011) Antioxidant potential of two red seaweeds from the Brazilian Coasts. J Agric Food Chem 59(10):5589–5594. doi:10.1021/jf200999n

    Article  CAS  Google Scholar 

  • Spigno G, De Faveri DM (2009) Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 93(2):210–217. doi:10.1016/j.jfoodeng.2009.01.006

    Article  CAS  Google Scholar 

  • Tabaraki R, Nateghi A (2011) Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrason Sonochem 18(6):1279–1286

    Article  CAS  Google Scholar 

  • Taga, M., silvia, MEEaPDE (1984) Chia Seeds as a Source of Natural Lipid Antioxidants. JAOCS ~ vol. 61, no, 5

  • Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116(1):240–248

    Article  CAS  Google Scholar 

  • Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116(3):693–701. doi:10.1016/j.foodchem.2009.03.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, P., Rezaei, M. & Shaviklo, A.R. The optimum conditions for the extraction of antioxidant compounds from the Persian gulf green algae (Chaetomorpha sp.) using response surface methodology. J Food Sci Technol 52, 2974–2981 (2015). https://doi.org/10.1007/s13197-014-1355-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1355-1

Keywords

Navigation