Skip to main content
Log in

Polyphenols from fresh frozen tea leaves (Camellia assamica L.,) by supercritical carbon dioxide extraction with ethanol entrainer - application of response surface methodology

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Fresh frozen tea leaves (Camellia assamica L.) were extracted with SC-CO2 to obtain polyphenols rich in EGCG and compared with conventional solvent extraction. Extraction parameters such as temperature, pressure and solvent to material ratio were critical factors in extraction and optimized by response surface methodology (RSM). The maximum yield of extractable solids using SC-CO2 with ethanol entrainer was carried out at pressures 150 to 350 bar, temperatures from 40 °C to 60 °C and solvent to material ratio 100 to 200. The theoretical yield was 3.91 % (w/w), while experimental yield was 4.20 ± 0.27 % (w/w) at temperature of 50 °C, pressure 250 bar and solvent to material ratio of 200. The chemical compositions of extracted solids were investigated by HPLC which showed 722.68–848.09 ± 1.12 mg of EGCG/g of extractable solids were separated in SC-CO2. Also, 54.62 ± 1.19 mg of EGCG/g of extractable solids was separated using conventional extraction which is quantitatively lesser than SC-CO2 extraction yield. Thus, SC-CO2 extraction was proved to be effective technique in obtaining extracts rich in EGCG (>95 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis L.) in Argentina. J Agric Food Chem 56:9225–9229

    Article  CAS  Google Scholar 

  • ASTA (1985) Official analytical method of the American spice trade association. Englewood Clliffes, New Jersey, p 3

    Google Scholar 

  • Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea-A review. J Am Coll Nutr 25:79–99

    Article  CAS  Google Scholar 

  • Carlson RJ, Bauer BA, Vincent A, Limburg PJ, Wilson T (2007) Reading the tea leaves: anti-carcinogenic properties of (-)-Epigallocatechin-3-Gallate. Mayo Clin Proc 82:725–732

    Article  CAS  Google Scholar 

  • Chang CJ, Chiu KL, Chen YL, Chang CY (2000) Separation of catechins from green tea using carbon dioxide extraction. Food Chem 68:109–113

    Article  CAS  Google Scholar 

  • Cheah ELC, Chan LW, Heng PWS (2006) Supercritical CO2 and its application in extraction of active principles from plant materials. Asian J Pharm Sci 1:59–71

    Article  CAS  Google Scholar 

  • Dale NG, Ferreira D, Zhou Y (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855

    Article  Google Scholar 

  • Gomes PB, Mata VG, Rodrigues AE (2007) Production of rose geranium oil using supercritical fluid extraction. J Supercrit Fluids 41:50–60

    Article  CAS  Google Scholar 

  • Gramza A, Pawlak-Lemanska K, Korezak J, Wasowicz E, Rudzinska M (2005) Tea extract as radical scavengers. Pol J Environ Stud 14:861–867

    CAS  Google Scholar 

  • Ho CT, Chen CW, Wanasundara UN, Shahidi F (1997) Natural antioxidants from tea in natural antioxidants. AOCS Press, Champaign, pp 213–223

    Google Scholar 

  • Hyong SP, Lee HJ, Shin MH, Lee KW, Lee H, Kim YS, Kim KO, Kim KH (2007) Effect of cosolvent on the decaffeination of green tea by supercritical carbon dioxide. Food Chem 105:1011–1017

    Article  Google Scholar 

  • Jin Y, Row KH (2007) Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer. Bull Korean Chem Soc 28:276–280

    Article  CAS  Google Scholar 

  • Jin YH, Han W, Huang SD, Xue BY, Deng X (2002) Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep Purif Technol 28:191–196

    Article  Google Scholar 

  • John MW, Ikonomou GD, Donohue MD (1987) Supercritical phase behaviour: the entrainer effect. Fluid Phase Equilib 33:295–814

    Article  Google Scholar 

  • Jun X, Shen D, Li Y, Zhang R (2011) Micro mechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control 22:1473–1476

    Article  Google Scholar 

  • Kai OC, Chan KP, Wang CC, Chu CY, Li WY, Choy KW, Rogers MS, Pang CP (2010) Green tea catechins and their oxidative protection in the rat eyes. J Agric Food Chem 58:1523–1534

    Article  Google Scholar 

  • Kilmartin PA, Hsu CF (2003) Characterization of polyphenols in green, oolong, black teas and in coffee, using cyclic voltammetry. Food Chem 82:501–512

    Article  CAS  Google Scholar 

  • Liang Y, Weiyang M, Jianliang L, Ying W (2001) Comparison of chemical composition of Llex latifolia Thumb and Camellia sinensis. L. Food Chem 75:339–343

    Article  CAS  Google Scholar 

  • Liang Y, Lu L, Zhang L, Wu S, Wu Y (2003) Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem 80:283–290

    Article  CAS  Google Scholar 

  • Muzolf M, Szymusiak H, Ska-Świglo AG, Rietjens IMCM, Tyrkowska BE (2008) pH-dependent radical scavenging capacity of green tea catechins. J Agric Food Chem 56:816–823

    Article  CAS  Google Scholar 

  • Park HS, Choi HK, Lee SJ, Park KW, Choi SG, Kim KH (2007) Effect of mass transfer on the removal of caffeine from green tea by supercritical carbon dioxide. J Supercrit Fluids 42:205–211

    Article  CAS  Google Scholar 

  • Pereira CG, Angela M, Meireles A (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic aspects. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  • Perva UA, Skerget M, Knez Z, Weinreich B, Otto F, Gruner S (2006) Extraction of active ingredients from green tea (Camellia sinensis L.): extraction efficiency of major catechins and caffeine. Food Chem 96:597–605

    Article  Google Scholar 

  • Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24

    Article  CAS  Google Scholar 

  • Praiya T, Machmudah S, Goto M, Sasaki M, Pavasant P, Shotipruk A (2008) Response surface methodology to supercritical carbondioxide extraction of asthaxanthin from Haematococcus pluvialis. Bioresour Technol 99:3110–3115

    Article  Google Scholar 

  • Rodrguez DG, Antonia MD, Rosa AL, Ferreira (2008) Supercritical fluid extraction of polyhalogenated pollutants from aquaculture and marine environmental samples: a review. J Sep Sci 31:1333–1345

    Article  Google Scholar 

  • Sato D, Ikeda N, Kinoshita T (2007) Home-processing black and green tea (Camellia sinensis L.). Food Saf Technol 26:1–2

    Article  Google Scholar 

  • Sun QL, Shu H, Jian HY, Jian LL, Xin QZ, Yue RL (2010) Decaffeination of green tea by supercritical carbon dioxide. J Med Plants Res 4:1161–1168

    CAS  Google Scholar 

  • Uday Sankar K (1989) Studies on physicochemical characteristics of volatile oil from papper (Piper nigrum) extracted by supercritical carbon dioxide. J Sci Food Agric 48:483–493

    Article  Google Scholar 

  • Vinson JA, Dabbagh YA, Serry MM, Jan J (1995) Plant flavonols are powerful antioxidants using an in-vitro oxidation model for heart disease. J Agric Food Chem 43:2800–2802

    Article  CAS  Google Scholar 

  • Vuong QV, John BG, Costas ES, Min HN, Paul DR (2011a) Optimum conditions for the water extraction of L-theanine from green tea. J Sep Sci 34:2468–2474

    Article  CAS  Google Scholar 

  • Vuong QV, John BG, Costas ES, Minh HN, Paul DR (2011b) Optimizing conditions for the extraction of catechins from green tea using hot water. J Sep Sci 34:3099–3106

    Article  CAS  Google Scholar 

  • Wang H, Keith H (2000) Epimerisation of catechins in green tea infusions. Food Chem 70:337–344

    Article  CAS  Google Scholar 

  • Wang Y, Xu P, Feng L, Yang X, Qian L (2011) Impact of instantaneous controlled pressure drop on microstructural modification of green tea and its infusion quality. J Food Sci Technol. doi:10.1007/s13197-011-0466-1

    Google Scholar 

  • Wei L, Tao L, Tang K (2009) Flavonoids from mulberry leaves by microwave-assisted extract and anti-fatigue activity. Afr J Agric Res 4:898–902

    Google Scholar 

  • Zarena AS, Uday Sankar K (2009) Supercritical carbon dioxide extraction of xanthones with antioxidant activity from Garcinia mangostana: characterization by HPLC/LC-ESI-MS. J Supercrit Fluids 49:330–337

    Article  CAS  Google Scholar 

  • Zhang X, Fei X, Yuan G, Jing W, Yi S, Xiaoxiong Z (2012) Optimizing the extraction of tea polyphenols, (−)-epigallocatechin gallate and theanine from summer green tea by using response surface methodology. Int J Food Sci Technol 47:2151–2157

    Article  CAS  Google Scholar 

  • Zhen YS (2002) Tea bioactivity and therapeutical potential. CRC Press: 1–17

Download references

Acknowledgments

The authors thank the Director of CFTRI, Mysore. The first author, Mr. Pravin Vasantrao Gadkari acknowledges the CSIR, India for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaya Sankar Kadimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadkari, P.V., Balarman, M. & Kadimi, U.S. Polyphenols from fresh frozen tea leaves (Camellia assamica L.,) by supercritical carbon dioxide extraction with ethanol entrainer - application of response surface methodology. J Food Sci Technol 52, 720–730 (2015). https://doi.org/10.1007/s13197-013-1085-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-1085-9

Keywords

Navigation