Skip to main content

Nanomaterials-Based Immunosensors in Food Analysis

  • Chapter
  • First Online:
Nanosensing and Bioanalytical Technologies in Food Quality Control

Abstract

Immunosensors are the type of affinity biosensors that work on the basis of antigen–antibody interactions. These devices can be highly advantageous to develop a portable and point-of-care system for living and non-living food contaminants. The utilization of nanomaterials in the fabrication of immunosensors is found to improve several sensing parameters of an immunosensors. In general, the nanomaterials are used as transducer materials for the fabrication of immunosensors. Till now, nanomaterials are found to show significant improvements in the sensing capabilities of electrochemical, optical, and piezoelectric immunosensors. The use of nanomaterials is found to enhance sensitivity, specificity, rapidness, and portability of the immunosensors. Herein, we have covered the key achievements of nanomaterials for the development of immunosensors. This book chapter covers the important aspects of immunosensors types, nanomaterials-based immunosensors fabrication, and accomplishments of nanomaterials-based electrochemical, optical, and piezoelectric immunosensors for the analysis of food contaminants, e.g., pesticides, pathogens, toxins, pharmaceuticals, allergens, and adulterants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah ZB, Grauby-Heywang C, Beven L, Cassagnere S, Moroté F, Maillard E, Sghaier H, Bouhacina TC (2019) Development of an ultrasensitive label-free immunosensor for fungal aflatoxin b1 detection. Biochem Eng J 150:107262

    Google Scholar 

  • Agache I, Miller R, Gern JE, Hellings PW, Jutel M, Muraro A, Phipatanakul W, Quirce S, Peden D (2019) Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a practall document. Allergy 74(3):449–463

    PubMed  Google Scholar 

  • Ahmed Adam MA, Tabana YM, Musa KB, Sandai DA (2017) Effects of different mycotoxins on humans, cell genome and their involvement in cancer. Oncol Rep 37(3):1321–1336

    PubMed  Google Scholar 

  • Ahmed MU, Zourob M, Tamiya E (2019) Immunosensors. Royal Society of Chemistry

    Google Scholar 

  • Alves RC, Pimentel FB, Nouws HP, Correr W, González-García MB, Oliveira MBP, Delerue-Matos C (2015) Detection of the peanut allergen ara h 6 in foodstuffs using a voltammetric biosensing approach. Anal Bioanal Chem 407(23):7157–7163

    CAS  PubMed  Google Scholar 

  • An X, Shi X, Zhang H, Yao Y, Wang G, Yang Q, Xia L, Sun X (2020) An electrochemical immunosensor based on a combined amplification strategy with the go–cs/ceo 2–cs nanocomposite for the detection of aflatoxin m 1. New J Chem 44(4):1362–1370

    CAS  Google Scholar 

  • Angulo-Ibanez A, Eletxigerra U, Lasheras X, Campuzano S, Merino S (2019) Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Anal Chim Acta 1079:94–102

    CAS  PubMed  Google Scholar 

  • Antiochia R, Bollella P, Favero G, Mazzei F (2016) Nanotechnology-based surface plasmon resonance affinity biosensors for in vitro diagnostics. Int J Anal Chem 2016:2981931. https://doi.org/10.1155/2016/2981931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda PR, Messina GA, Bertolino FA, Pereira SV, Baldo MAF, Raba J (2018) Nanomaterials in fluorescent laser-based immunosensors: review and applications. Microchem J 141:308–323

    CAS  Google Scholar 

  • Aydin EB, Aydin M, Sezgintürk MK (2019) Advances in electrochemical immunosensors. In: Advances in clinical chemistry. Elsevier, pp 1–57

    Google Scholar 

  • Banica F-G (2012) Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons

    Google Scholar 

  • Baniukevic J, Kirlyte J, Ramanavicius A, Ramanaviciene A (2013) Application of oriented and random antibody immobilization methods in immunosensor design. Sensors Actuators B Chem 189:217–223

    CAS  Google Scholar 

  • Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S (2020) Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2(9):3764–3787. https://doi.org/10.1039/D0NA00472C

    Article  Google Scholar 

  • Berhanu AL, Gaurav, Mohiuddin I, Malik AK, Aulakh JS, Kumar V, Kim K-H (2019) A review of the applications of schiff bases as optical chemical sensors. TrAC Trends Anal Chem 116:74–91. Available from https://www.sciencedirect.com/science/article/pii/S0165993619301153. https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  • Bhardwaj J, Devarakonda S, Kumar S, Jang J (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors Actuators B Chem 253:115–123

    CAS  Google Scholar 

  • Bhardwaj H, Singh C, Kotnala R, Sumana G (2018) Graphene quantum dots-based nano-biointerface platform for food toxin detection. Anal Bioanal Chem 410(28):7313–7323

    CAS  PubMed  Google Scholar 

  • Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim K-H, Deep A (2021) Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environ Int 146:106183. Available from https://www.sciencedirect.com/science/article/pii/S0160412020321383. doi https://doi.org/10.1016/j.envint.2020.106183

  • Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots fret based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499. Available from https://www.sciencedirect.com/science/article/pii/S0956566315307387. doi: https://doi.org/10.1016/j.bios.2015.12.083

  • Bratakou S, Nikoleli GP, Siontorou CG, Nikolelis DP, Karapetis S, Tzamtzis N (2017) Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated anti-stx using graphene electrodes. Electroanalysis 29(4):990–997

    CAS  Google Scholar 

  • Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2020) Electrochemical affinity biosensors based on selected nanostructures for food and environmental monitoring. Sensors 20(18):5125

    CAS  PubMed Central  Google Scholar 

  • Capoferri D, Della Pelle F, Del Carlo M, Compagnone D (2018) Affinity sensing strategies for the detection of pesticides in food. Foods 7(9):148

    PubMed Central  Google Scholar 

  • Cervera-Chiner L, Juan-Borrás M, March C, Arnau A, Escriche I, Montoya Á, Jiménez Y (2018) High fundamental frequency quartz crystal microbalance (hff-qcm) immunosensor for pesticide detection in honey. Food Control 92:1–6

    CAS  Google Scholar 

  • Cervera-Chiner L, March C, Arnau A, Jiménez Y, Montoya Á (2020) Detection of ddt and carbaryl pesticides in honey by means of immunosensors based on high fundamental frequency quartz crystal microbalance (hff-qcm). J Sci Food Agric 100(6):2468–2472

    CAS  PubMed  Google Scholar 

  • Chandra P, Prakash R (2020) Nanobiomaterial engineering. Springer

    Google Scholar 

  • Chang H, Lv J, Zhang H, Zhang B, Wei W, Qiao Y (2017) Photoresponsive colorimetric immunoassay based on chitosan modified agi/tio2 heterojunction for highly sensitive chloramphenicol detection. Biosens Bioelectron 87:579–586

    CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Sabharwal PK, Jain S, Kaur A, Singh H (2019) Functionalized polymeric magnetic nanoparticle assisted Sers immunosensor for the sensitive detection of S. typhimurium. Anal Chimica Acta 1067:98–106

    CAS  Google Scholar 

  • Chauhan R, Singh J, Solanki PR, Manaka T, Iwamoto M, Basu T, Malhotra B (2016) Label-free piezoelectric immunosensor decorated with gold nanoparticles: kinetic analysis and biosensing application. Sensors Actuators B Chem 222:804–814

    CAS  Google Scholar 

  • Chekin F, Singh SK, Vasilescu A, Dhavale VM, Kurungot S, Boukherroub R, Szunerits S (2016) Reduced graphene oxide modified electrodes for sensitive sensing of gliadin in food samples. ACS Sensors 1(12):1462–1470

    CAS  Google Scholar 

  • Chen Y, Huang X-h, H-s S, Wang Y (2011) Research progress of piezoelectric immunosensors. In: 2011 Symposium on piezoelectricity, acoustic waves and device applications (SPAWDA). IEEE, pp 286–289

    Google Scholar 

  • Chen R, Huang X, Li J, Shan S, Lai W, Xiong Y (2016) A novel fluorescence immunoassay for the sensitive detection of escherichia coli o157:H7 in milk based on catalase-mediated fluorescence quenching of cdte quantum dots. Anal Chim Acta 947:50–57. Available from https://www.sciencedirect.com/science/article/pii/S0003267016312004. doi: https://doi.org/10.1016/j.aca.2016.10.017

  • Cho I-H, Lee J, Kim J, Kang M-s, Paik JK, Ku S, Cho H-M, Irudayaraj J, Kim D-H (2018) Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18(1):207

    PubMed Central  Google Scholar 

  • Choi H, Hwang BK, Kim B-S, Choi SH (2020) Influence of pathogen contamination on beef microbiota under different storage temperatures. Food Res Int 132:109118. Available from https://www.sciencedirect.com/science/article/pii/S0963996920301435. doi: https://doi.org/10.1016/j.foodres.2020.109118

  • Cristea C, Florea A, Tertiș M, Săndulescu R (2015) Immunosensors. In: Biosensors-micro and nanoscale applications. IntechOpen

    Google Scholar 

  • Daliri F, Aboagye AA, Kyei-Baffour V, Elahi F, Chelliah R, Daliri EB-M (2019) Immunosensors for food safety: current trends and future perspectives. 한국식품위생안전성학회지 34(6):509–518

    Google Scholar 

  • Ding Y, Shang H, Wang X, Chen L (2020) A Sers-based competitive immunoassay for highly sensitive and specific detection of ochratoxin a. Analyst 145(18):6079–6084

    CAS  PubMed  Google Scholar 

  • Duffy G, Moore E (2017) Electrochemical immunosensors for food analysis: a review of recent developments. Anal Lett 50(1):1–32

    CAS  Google Scholar 

  • Falleh H, Ben Jemaa M, Saada M, Ksouri R (2020) Essential oils: a promising eco-friendly food preservative. Food Chem 330:127268. Available from https://www.sciencedirect.com/science/article/pii/S0308814620311304. doi: https://doi.org/10.1016/j.foodchem.2020.127268

  • Fan R, Tang S, Luo S, Liu H, Zhang W, Yang C, He L, Chen Y (2020) Duplex surface enhanced raman scattering-based lateral flow immunosensor for the low-level detection of antibiotic residues in milk. Molecules 25(22):5249

    CAS  PubMed Central  Google Scholar 

  • Felix FS, Angnes L (2018) Electrochemical immunosensors–a powerful tool for analytical applications. Biosens Bioelectron 102:470–478

    CAS  PubMed  Google Scholar 

  • Filik H, Avan AA (2019) Nanostructures for nonlabeled and labeled electrochemical immunosensors: simultaneous electrochemical detection of cancer markers: a review. Talanta 205:120153

    CAS  PubMed  Google Scholar 

  • Fu X, Chu Y, Zhao K, Li J, Deng A (2017) Ultrasensitive detection of the β-adrenergic agonist brombuterol by a Sers-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta 184(6):1711–1719

    CAS  Google Scholar 

  • Gamella M, Bueno-Díaz C, Montiel VR-V, Povedano E, Reviejo A, Villalba M, Campuzano S, Pingarrón J (2020) First electrochemical immunosensor for the rapid detection of mustard seeds in plant food extracts. Talanta 219:121247

    CAS  PubMed  Google Scholar 

  • Gao R, Zhong Z, Gao X, Jia L (2018) Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of pseudomonas aeruginosa in food samples. J Agric Food Chem 66(41):10,898–10,905

    CAS  Google Scholar 

  • García-Díaz M, Patiño B, Vázquez C, Gil-Serna J (2019) A novel niosome-encapsulated essential oil formulation to prevent aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins 11(11):646

    PubMed Central  Google Scholar 

  • Gobi KV, Matsumoto K, Toko K, Miura N (2008) Highly regenerable and storageable all-chemical based peg-immunosensor chip for spr detection of ppt levels of fragrant compounds from beverage samples. Sens & Instrumen Food Qual 2(4):225. https://doi.org/10.1007/s11694-008-9033-5

    Article  Google Scholar 

  • Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim K-H (2018) Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review. Biosens Bioelectron 121:205–222. Available from https://www.sciencedirect.com/science/article/pii/S0956566318306262. doi: https://doi.org/10.1016/j.bios.2018.08.029

  • Guo M, Sun L, Liu L, Song S, Kuang H, Cui G (2018) Ultrasensitive immunochromatographic strip for detection of cyproheptadine. Food Agric Immunol 29(1):941–952

    CAS  Google Scholar 

  • Guo R, Huang F, Cai G, Zheng L, Xue L, Li Y, Liao M, Wang M, Lin J (2020a) A colorimetric immunosensor for determination of foodborne bacteria using rotating immunomagnetic separation, gold nanorod indication, and click chemistry amplification. Microchim Acta 187(4):1–9

    Google Scholar 

  • Guo Y, Girmatsion M, Li H-W, Xie Y, Yao W, Qian H, Abraha B, Mahmud A (2020b) Rapid and ultrasensitive detection of food contaminants using surface-enhanced raman spectroscopy-based methods. Crit Rev Food Sci Nutr 1–14

    Google Scholar 

  • Haddada MB, Salmain M, Boujday S (2018) Gold colloid-nanostructured surfaces for enhanced piezoelectric immunosensing of staphylococcal enterotoxin a. Sensors Actuators B Chem 255:1604–1613

    Google Scholar 

  • Han E, Li X, Zhang Y, Zhang M, Cai J, Zhang X (2020) Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of staphylococcus aureus. Anal Biochem 611:113982

    CAS  PubMed  Google Scholar 

  • Hassan FI, Niaz K, Khan F, Maqbool F, Abdollahi M (2017) The relation between rice consumption, arsenic contamination, and prevalence of diabetes in south asia. EXCLI J 16:1132

    PubMed  PubMed Central  Google Scholar 

  • He S, Li X, Gao J, Tong P, Chen H (2018a) Development of a h2o2-sensitive quantum dots-based fluorescent sandwich elisa for sensitive detection of bovine β-lactoglobulin by monoclonal antibody. J Sci Food Agric 98(2):519–526. Available from https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.8489. https://doi.org/10.1002/jsfa.8489

    Article  CAS  PubMed  Google Scholar 

  • He S, Li X, Wu Y, Wu S, Wu Z, Yang A, Tong P, Yuan J, Gao J, Chen H (2018b) Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66(44):11830–11838

    CAS  PubMed  Google Scholar 

  • Hiep HM, Endo T, Kerman K, Chikae M, Kim D-K, Yamamura S, Takamura Y, Tamiya E (2007) A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mater 8(4):331–338. https://doi.org/10.1016/j.stam.2006.12.010

    Article  CAS  Google Scholar 

  • Hong J, Wang Y, Zhu L, Jiang L (2020) An electrochemical sensor based on gold-nanocluster-modified graphene screen-printed electrodes for the detection of β-lactoglobulin in milk. Sensors 20(14):3956

    CAS  PubMed Central  Google Scholar 

  • Hu W, Chen H, Zhang H, He G, Li X, Zhang X, Liu Y, Li CM (2014) Sensitive detection of multiple mycotoxins by spri with gold nanoparticles as signal amplification tags. J Colloid Interface Sci 431:71–76. Available from http://europepmc.org/abstract/MED/24992296. https://doi.org/10.1016/j.jcis.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Hu X, Zhang Y, Teng M, Deng R, Xing G, Tao J, Xu G, Chen J, Zhang Y (2019) Label-free electrochemical immunosensor based on aunps/zn/ni-zif-8-800@ graphene composites for sensitive detection of monensin in milk. Sensors Actuators B Chem 288:571–578

    CAS  Google Scholar 

  • Huang X, Zhan S, Xu H, Meng X, Xiong Y, Chen X (2016) Ultrasensitive fluorescence immunoassay for detection of ochratoxin a using catalase-mediated fluorescence quenching of cdte qds. Nanoscale 8(17):9390–9397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iarossi M, Schiattarella C, Rea I, De Stefano L, Fittipaldi R, Vecchione A, Velotta R, Ventura BD (2018) Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles. ACS Omega 3(4):3805–3812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Mayor A, Amor-Gutiérrez O, Costa-García A, de la Escosura-Muñiz A (2019) Nanoparticles as emerging labels in electrochemical immunosensors. Sensors 19(23):5137

    PubMed Central  Google Scholar 

  • Jung Y, Jeong JY, Chung BH (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133(6):697–701

    CAS  PubMed  Google Scholar 

  • Kabir E, Raza N, Kumar V, Singh J, Tsang YF, Lim DK, Szulejko JE, Kim K-H (2019) Recent advances in nanomaterial-based human breath analytical technology for clinical diagnosis and the way forward. Chem 5(12): 3020–3057. Available from https://www.sciencedirect.com/science/article/pii/S2451929419303730. doi: https://doi.org/10.1016/j.chempr.2019.08.004

  • Karczmarczyk A, Haupt K, Feller K-H (2017) Development of a qcm-d biosensor for ochratoxin a detection in red wine. Talanta 166:193–197

    CAS  PubMed  Google Scholar 

  • Karunakaran C, Pandiaraj M, Santharaman P (2015) Chapter 4 - Immunosensors. In: Karunakaran C, Bhargava K, Benjamin R (eds) Biosensors and bioelectronics. Elsevier, pp 205–245

    Google Scholar 

  • Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82(15):6401–6408

    CAS  PubMed  Google Scholar 

  • Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim K-H (2018) Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol Adv 36(2):467–481. Available from https://www.sciencedirect.com/science/article/pii/S0734975018300144. doi: https://doi.org/10.1016/j.biotechadv.2018.01.014

  • Kłos-Witkowska A (2016) The phenomenon of fluorescence in immunosensors. Acta Biochim Pol 63(2):215–221

    PubMed  Google Scholar 

  • Kolok AS, Ali JM, Rogan EG, Bartelt-Hunt SL (2018) The fate of synthetic and endogenous hormones used in the us beef and dairy industries and the potential for human exposure. Curr Environ Health Reports 5(2):225–232. https://doi.org/10.1007/s40572-018-0197-9

    Article  CAS  Google Scholar 

  • Kour R, Arya S, Young S-J, Gupta V, Bandhoria P, Khosla A (2020) Recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 167(3):037555

    CAS  Google Scholar 

  • Krishna VD, Wu K, Su D, Cheeran MC, Wang J-P, Perez A (2018) Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54

    CAS  PubMed  Google Scholar 

  • Kukkar D, Vellingiri K, Kumar V, Deep A, Kim K-H (2018) A critical review on the metal sensing capabilities of optically active nanomaterials: limiting factors, mechanism, and performance evaluation. TrAC Trends Anal Chem 109:227–246. Available from https://www.sciencedirect.com/science/article/pii/S016599361830284X. doi https://doi.org/10.1016/j.trac.2018.09.009

  • Kukkar D, Kukkar P, Kumar V, Hong J, Kim K-H, Deep A (2021) Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 173:112787. Available from https://www.sciencedirect.com/science/article/pii/S0956566320307740. doi https://doi.org/10.1016/j.bios.2020.112787

  • Kumar V, Chopra A, Arora S, Yadav S, Kumar S, Kaur I (2015) Amperometric sensing of urea using edge activated graphene nanoplatelets. RSC Adv 5(18):13,278–13,284. https://doi.org/10.1039/C4RA12594K

    Article  CAS  Google Scholar 

  • Kumar V, Kim K-H, Park J-W, Hong J, Kumar S (2017a) Graphene and its nanocomposites as a platform for environmental applications. Chem Eng J 315:210–232. Available from https://www.sciencedirect.com/science/article/pii/S1385894717300098. doi: https://doi.org/10.1016/j.cej.2017.01.008

  • Kumar V, Mahajan R, Kaur I, Kim K-H (2017b) Simple and mediator-free urea sensing based on engineered nanodiamonds with polyaniline nanofibers synthesized in situ. ACS Appl Mater Interfaces 9(20):16,813–16,823. https://doi.org/10.1021/acsami.7b01948

    Article  CAS  Google Scholar 

  • Kumar V, Kukkar D, Hashemi B, Kim K-H, Deep A (2019) Advanced functional structure-based sensing and imaging strategies for cancer detection: possibilities, opportunities, challenges, and prospects. Adv Funct Mater 29(16):1807859. Available from https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201807859. https://doi.org/10.1002/adfm.201807859

    Article  CAS  Google Scholar 

  • Kumar V, Kaur I, Arora S, Mehla R, Vellingiri K, Kim K-H (2020a) Graphene nanoplatelet/graphitized nanodiamond-based nanocomposite for mediator-free electrochemical sensing of urea. Food Chem 303:125375. Available from https://www.sciencedirect.com/science/article/pii/S030881461931489X. doi: https://doi.org/10.1016/j.foodchem.2019.125375

  • Kumar V, Vaid K, Bansal SA, Kim K-H (2020b) Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: current status and perspectives. Biosens Bioelectron:112382

    Google Scholar 

  • Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, Kim K-H (2021) Aspects of point-of-care diagnostics for personalized health wellness. Int J Nanomedicine 16:383

    PubMed  PubMed Central  Google Scholar 

  • Lara S, Perez-Potti A (2018) Applications of nanomaterials for immunosensing. Biosensors 8(4):104

    CAS  PubMed Central  Google Scholar 

  • Li H, Zhang L (2017) Photocatalytic performance of different exposed crystal facets of biocl. Curr Opin Green Sustain Chem 6:48–56. Available from http://www.sciencedirect.com/science/article/pii/S2452223617300494. doi: https://doi.org/10.1016/j.cogsc.2017.05.005

  • Li Y, Chen Q, Xu X, Jin Y, Wang Y, Zhang L, Yang W, He L, Feng X, Chen Y (2018) Microarray surface enhanced raman scattering based immunosensor for multiplexing detection of mycotoxin in foodstuff. Sensors Actuators B Chem 266:115–123

    CAS  Google Scholar 

  • Li Y, Tang S, Zhang W, Cui X, Zhang Y, Jin Y, Zhang X, Chen Y (2019) A surface-enhanced raman scattering-based lateral flow immunosensor for colistin in raw milk. Sensors Actuators B Chem 282:703–711

    CAS  Google Scholar 

  • Liang Y, Huang X, Chen X, Zhang W, Ping G, Xiong Y (2018) Plasmonic elisa for naked-eye detection of ochratoxin a based on the tyramine-h2o2 amplification system. Sensors Actuators B Chem 259:162–169

    CAS  Google Scholar 

  • Liu X, Hu Y, Zheng S, Liu Y, He Z, Luo F (2016) Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched salmonella enteritidis. Sens Actuat B Chem 230:191–198. Available from https://www.sciencedirect.com/science/article/pii/S0925400516301939. doi https://doi.org/10.1016/j.snb.2016.02.043

  • Liu Y, Zhao C, Fu K, Song X, Xu K, Wang J, Li J (2017) Selective turn-on fluorescence detection of vibrio parahaemolyticus in food based on charge-transfer between cdse/zns quantum dots and gold nanoparticles. Food Control 80:380–387

    CAS  Google Scholar 

  • Lu Y, Shi Z, Liu Q (2019) Smartphone-based biosensors for portable food evaluation. Curr Opin Food Sci 28: 74-81. Available from https://www.sciencedirect.com/science/article/pii/S2214799319300700. DOI 10.1016/j.cofs.2019.09.003

  • Lv X, Zhang Y, Liu G, Du L, Wang S (2017) Aptamer-based fluorescent detection of ochratoxin a by quenching of gold nanoparticles. RSC Adv 7(27):16,290–16,294

    CAS  Google Scholar 

  • Mahato K, Chandra P (2019) Paper-based miniaturized immunosensor for naked eye alp detection based on digital image colorimetry integrated with smartphone. Bios Bioelectron 128:9–16. Available from https://www.sciencedirect.com/science/article/pii/S0956566318309606. doi https://doi.org/10.1016/j.bios.2018.12.006

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018) Electrochemical immunosensors: Fundamentals and applications in clinical diagnostics. In: Handbook of immunoassay technologies. Elsevier, pp 359–414

    Google Scholar 

  • Mahato K, Purohit B, Kumar A, Chandra P (2020) Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered au-nano-dendroids and graphene oxide nanocomposite. Biosens Bioelectron 148:111815. Available from https://www.sciencedirect.com/science/article/pii/S0956566319308942. doi doi:https://doi.org/10.1016/j.bios.2019.111815

  • Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    CAS  PubMed  Google Scholar 

  • Malvano F, Pilloton R, Albanese D (2020) Label-free impedimetric biosensors for the control of food safety–a review. Int J Environ Anal Chem 100(4):468–491

    CAS  Google Scholar 

  • Man Y, Ren J, Li B, Jin X, Pan L (2018) A simple, highly sensitive colorimetric immunosensor for the detection of alternariol monomethyl ether in fruit by non-aggregated gold nanoparticles. Anal Bioanal Chem 410(28):7511–7521

    CAS  PubMed  Google Scholar 

  • Masdor NA, Altintas Z, Tothill IE (2016) Sensitive detection of campylobacter jejuni using nanoparticles enhanced qcm sensor. Biosens Bioelectron 78:328–336

    CAS  PubMed  Google Scholar 

  • Mistry KK, Layek K, Mahapatra A, RoyChaudhuri C, Saha H (2014) A review on amperometric-type immunosensors based on screen-printed electrodes. Analyst 139(10):2289–2311

    CAS  PubMed  Google Scholar 

  • Mohamad A, Teo H, Keasberry NA, Ahmed MU (2019) Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles. Crit Rev Biotechnol 39(1):50–66

    CAS  PubMed  Google Scholar 

  • Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9(3):86

    CAS  PubMed Central  Google Scholar 

  • Mustafa F, Andreescu S (2018) Chemical and biological sensors for food-quality monitoring and smart packaging. Foods (Basel, Switzerland) 7(10):168. Available from https://pubmed.ncbi.nlm.nih.gov/30332833. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210272/. https://doi.org/10.3390/foods7100168

    Article  CAS  Google Scholar 

  • Narayanan J, Sharma MK, Ponmariappan S, Shaik M, Upadhyay S (2015) Electrochemical immunosensor for botulinum neurotoxin type-e using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosens Bioelectron 69:249–256

    CAS  PubMed  Google Scholar 

  • Neng J, Zhang Q, Sun P (2020) Application of surface-enhanced raman spectroscopy in fast detection of toxic and harmful substances in food. Biosens Bioelectron 112480

    Google Scholar 

  • Nerín C, Aznar M, Carrizo D (2016) Food contamination during food process. Trends Food Sci Technol 48:63–68. Available from https://www.sciencedirect.com/science/article/pii/S0924224415301370. doi: https://doi.org/10.1016/j.tifs.2015.12.004

  • Niu X, Cheng N, Ruan X, Du D, Lin Y (2019) Nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc 167(3):037508

    Google Scholar 

  • Njobeh PB, Dutton MF, Koch SH, Chuturgoon A, Stoev S, Seifert K (2009) Contamination with storage fungi of human food from Cameroon. Int J Food Microbiol 135(3):193–198. Available from https://www.sciencedirect.com/science/article/pii/S0168160509003870. doi https://doi.org/10.1016/j.ijfoodmicro.2009.08.001

  • Pal M, Lee S, Kwon D, Hwang J, Lee H, Hwang S, Jeon S (2017) Direct immobilization of antibodies on zn-doped fe3o4 nanoclusters for detection of pathogenic bacteria. Anal Chim Acta 952:81–87

    CAS  PubMed  Google Scholar 

  • Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S (2017) Nanomaterials for electrochemical immunosensing. Sensors 17(5):1041

    PubMed Central  Google Scholar 

  • Patra S, Roy E, Madhuri R, Sharma PK (2017) A technique comes to life for security of life: the food contaminant sensors. In: Nanobiosensors. Elsevier, pp 713–772

    Google Scholar 

  • Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    CAS  PubMed  Google Scholar 

  • Peng J, Song S, Liu L, Kuang H, Xu C (2015) Development of sandwich elisa and immunochromatographic strip for the detection of peanut allergen ara h 2. Food Anal Methods 8(10):2605–2611

    Google Scholar 

  • Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11(3):448

    PubMed Central  Google Scholar 

  • Pollet J, Delport F, Janssen KP, Tran DT, Wouters J, Verbiest T, Lammertyn J (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber spr biosensor. Talanta 83(5):1436–1441. https://doi.org/10.1016/j.talanta.2010.11.032

    Article  CAS  PubMed  Google Scholar 

  • Poltronieri P, Mezzolla V, Primiceri E, Maruccio G (2014) Biosensors for the detection of food pathogens. Foods (Basel, Switzerland) 3(3):511–526. Available from https://pubmed.ncbi.nlm.nih.gov/28234334. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302249/. https://doi.org/10.3390/foods3030511

    Article  CAS  Google Scholar 

  • Pottathara YB, Thomas S, Kalarikkal N, Grohens Y, Kokol V (2019) Nanomaterials synthesis: design, fabrication and applications. Elsevier

    Google Scholar 

  • Pu Y, Cai F, Wang D, Wang J-X, Chen J-F (2018) Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res 57(6):1790–1802

    CAS  Google Scholar 

  • Purohit B, Kumar A, Mahato K, Chandra P (2020a) Smartphone-assisted personalized diagnostic devices and wearable sensors. Curr Opin Biomed Eng 13:42–50. Available from https://www.sciencedirect.com/science/article/pii/S2468451119300376. doi https://doi.org/10.1016/j.cobme.2019.08.015

  • Purohit B, Vernekar PR, Shetti NP, Chandra P (2020b) Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sens Int 1:100040. Available from https://www.sciencedirect.com/science/article/pii/S2666351120300401. doi https://doi.org/10.1016/j.sintl.2020.100040

  • Radhakrishnan R, Poltronieri P (2017) Fluorescence-free biosensor methods in detection of food pathogens with a special focus on listeria monocytogenes. Biosensors 7:63. https://doi.org/10.3390/bios7040063

    Article  CAS  PubMed Central  Google Scholar 

  • Rateni G, Dario P, Cavallo F (2017) Smartphone-based food diagnostic technologies: a review. Sensors 17(6):1453

    PubMed Central  Google Scholar 

  • Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605(2):111–129

    CAS  PubMed  Google Scholar 

  • Sabet FS, Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR (2017) Fret-based aptamer biosensor for selective and sensitive detection of aflatoxin b1 in peanut and rice. Food Chem 220:527–532. Available from https://www.sciencedirect.com/science/article/pii/S0308814616316211. doi https://doi.org/10.1016/j.foodchem.2016.10.004

  • Sahoo AK, Sharma S, Chattopadhyay A, Ghosh SS (2012) Quick and simple estimation of bacteria using a fluorescent paracetamol dimer–au nanoparticle composite. Nanoscale 4(5):1688–1694. https://doi.org/10.1039/C2NR11837H

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kitsunai M, Ahmed MU, Sugiyama S, Tamiya E (2008) Label-free electrochemical detection for food allergen using screen printed carbon electrode. Electrochemistry 76(8):606–609

    CAS  Google Scholar 

  • Savas S, Altintas Z (2019) Graphene quantum dots as nanozymes for electrochemical sensing of yersinia enterocolitica in milk and human serum. Materials 12(13):2189

    CAS  PubMed Central  Google Scholar 

  • Shukla S, Haldorai Y, Bajpai VK, Rengaraj A, Hwang SK, Song X, Kim M, Huh YS, Han Y-K (2018) Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of cronobacter sakazakii in powdered infant formula. Biosens Bioelectron 109:139–149

    CAS  PubMed  Google Scholar 

  • Suman P, Chandra P (2020) Immunodiagnostic technologies from laboratory to point-of-care testing. Springer Singapore, Singapore

    Google Scholar 

  • Sun X, Ye Y, He S, Wu Z, Yue J, Sun H, Cao X (2019) A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using aunps-pei-mwcnts modified electrode. Biosens Bioelectron 143:111607

    CAS  PubMed  Google Scholar 

  • Suri CR, Boro R, Nangia Y, Gandhi S, Sharma P, Wangoo N, Rajesh K, Shekhawat GS (2009) Immunoanalytical techniques for analyzing pesticides in the environment. TrAC Trends Anal Chem 28(1):29–39. Available from https://www.sciencedirect.com/science/article/pii/S0165993608002331. doi https://doi.org/10.1016/j.trac.2008.09.017

  • Talib NAA, Salam F, Sulaiman Y (2018a) Development of highly sensitive immunosensor for clenbuterol detection by using poly (3, 4-ethylenedioxythiophene)/graphene oxide modified screen-printed carbon electrode. Sensors 18(12):4324

    PubMed Central  Google Scholar 

  • Talib NAA, Salam F, Yusof NA, Ahmad SAA, Azid MZ, Mirad R, Sulaiman Y (2018b) Enhancing a clenbuterol immunosensor based on poly (3, 4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology. RSC Adv 8(28):15522–15532

    CAS  Google Scholar 

  • Tang Y, Tang D, Zhang J, Tang D (2018) Novel quartz crystal microbalance immunodetection of aflatoxin b1 coupling cargo-encapsulated liposome with indicator-triggered displacement assay. Anal Chim Acta 1031:161–168

    CAS  PubMed  Google Scholar 

  • Thakur M, Ragavan K (2013) Biosensors in food processing. J Food Sci Technol 50(4):625–641

    CAS  PubMed  Google Scholar 

  • Tian J, Huang J, Zhao Y, Zhao S (2012) Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotubes. Microchim Acta 178(1):81–88

    CAS  Google Scholar 

  • Tsagkaris AS, Pulkrabova J, Hajslova J (2021) Optical screening methods for pesticide residue detection in food matrices: advances and emerging analytical trends. Foods 10(1):88

    CAS  PubMed Central  Google Scholar 

  • Tsekenis G, Chatzipetrou M, Massaouti M, Zergioti I (2019) Comparative assessment of affinity-based techniques for oriented antibody immobilization towards immunosensor performance optimization. J Sens 2019

    Google Scholar 

  • Turner AP (1997) Immunosensors: the next generation. Nat Biotechnol 15(5):421–421

    CAS  PubMed  Google Scholar 

  • Vaid K, Dhiman J, Kumar S, Kim K-H, Kumar V (2020a) A novel approach for effective alteration of morphological features of polyaniline through interfacial polymerization for versatile applications. Nano 10(12):2404

    CAS  Google Scholar 

  • Vaid K, Dhiman J, Sarawagi N, Kumar V (2020b) Experimental and computational study on the selective interaction of functionalized gold nanoparticles with metal ions: sensing prospects. Langmuir 36(41):12,319–12,326. https://doi.org/10.1021/acs.langmuir.0c02280

    Article  CAS  Google Scholar 

  • Vaisocherová-Lísalová H, Víšová I, Ermini ML, Špringer T, Song XC, Mrázek J, Lamačová J, Scott Lynn N Jr, Šedivák P, Homola J (2016) Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron 80:84–90. https://doi.org/10.1016/j.bios.2016.01.040

    Article  CAS  PubMed  Google Scholar 

  • Vezocnik V, Hodnik V, Anderluh G (2017) Surface plasmon resonance analysis of food toxins and toxicants. pp 195–216

    Google Scholar 

  • Vikrant K, Tsang DCW, Raza N, Giri BS, Kukkar D, Kim K-H (2018) Potential utility of metal–organic framework-based platform for sensing pesticides. ACS Appl Mater Interfaces 10(10):8797–8817. https://doi.org/10.1021/acsami.8b00664

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Park B (2020) Immunoassay biosensing of foodborne pathogens with surface plasmon resonance imaging: a review. J Agric Food Chem 68(46):12,927–12,939

    CAS  Google Scholar 

  • Wang J, Munir A, Zhu Z, Zhou HS (2010) Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules. Anal Chem 82(16):6782–6789. https://doi.org/10.1021/ac100812c

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kang H, Xu D, Wang C, Liu S, Hu X (2013) Label-free impedimetric immunosensor for sensitive detection of fenvalerate in tea. Food Chem 141(1):84–90

    CAS  PubMed  Google Scholar 

  • Wang X, Niessner R, Tang D, Knopp D (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23

    CAS  PubMed  Google Scholar 

  • Wang Q-L, Li J, Ding L-S, Xie J, Qing L-S (2017a) A simple nano-Sio 2-based elisa method for residue detection of 2, 4-dichlorophenoxyacetic acid in bean sprouts. Food Anal Methods 10(5):1500–1506

    Google Scholar 

  • Wang S, Zhang Y, Pang G, Zhang Y, Guo S (2017b) Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor. Anal Chem 89(3):1704–1709

    CAS  PubMed  Google Scholar 

  • Wang H, Wang L, Hu Q, Wang R, Li Y, Kidd M (2018a) Rapid and sensitive detection of campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J Food Prot 81(8):1321–1330

    PubMed  Google Scholar 

  • Wang Y, Zhang L, Peng D, Xie S, Chen D, Pan Y, Tao Y, Yuan Z (2018b) Construction of electrochemical immunosensor based on gold-nanoparticles/carbon nanotubes/chitosan for sensitive determination of t-2 toxin in feed and swine meat. Int J Mol Sci 19(12):3895

    PubMed Central  Google Scholar 

  • Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N, Wang M, Lin J (2020a) An ultrasensitive biosensor for colorimetric detection of salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate framework-8 nanocatalysts. Biosens Bioelectron 150:111862

    CAS  PubMed  Google Scholar 

  • Wang Y, Qi Q, Zhou J, Li H, Fu L (2020b) Graphene oxide and gold nanoparticles-based dual amplification method for immunomagnetic beads-derived elisa of parvalbumin. Food Control 110:106989

    CAS  Google Scholar 

  • Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 12(2):02D301

    PubMed  Google Scholar 

  • Wu Y, Zhou Y, Huang H, Chen X, Leng Y, Lai W, Huang X, Xiong Y (2020) Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sensors Actuators B Chem 316:128107

    CAS  Google Scholar 

  • Xu X, Ye Z-Z, Wu J, Ying Y-B (2010) Application and research development of surface plasmon resonance-based immunosensors for protein detection. Chinese J Anal Chem 38(7): 1052–1059. Available from http://www.sciencedirect.com/science/article/pii/S1872204009600591. doi: https://doi.org/10.1016/S1872-2040(09)60059-1

  • Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin b1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367. Available from http://europepmc.org/abstract/MED/23603134. https://doi.org/10.1016/j.bios.2013.03.048

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Wang Y, Pan L, Wei X, Wang Y (2017) Dual-labelled immunoassay with goldmag nanoparticles and quantum dots for quantification of casein in milk. Food Agric Immunol 28(6):1105–1115

    CAS  Google Scholar 

  • Xu Y, Kutsanedzie FY, Hassan MM, Zhu J, Li H, Chen Q (2020) Functionalized hollow au@ ag nanoflower Sers matrix for pesticide sensing in food. Sensors Actuators B Chem 324:128718

    CAS  Google Scholar 

  • Xu Z, Long L-L, Chen Y-q, Chen M-L, Cheng Y-H (2021) A nanozyme-linked immunosorbent assay based on metal–organic frameworks (mofs) for sensitive detection of aflatoxin b1. Food Chem 338:128039

    CAS  PubMed  Google Scholar 

  • Yan L, Dou L, Bu T, Huang Q, Wang R, Yang Q, Huang L, Wang J, Zhang D (2018) Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe. Food Chem 261:131–138

    CAS  PubMed  Google Scholar 

  • Yang A, Zheng Y, Long C, Chen H, Liu B, Li X, Yuan J, Cheng F (2014) Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with cdse/zns quantum dots. Food Chem 150:73–79

    CAS  PubMed  Google Scholar 

  • Yao S, Li J, Pang B, Wang X, Shi Y, Song X, Xu K, Wang J, Zhao C (2020) Colorimetric immunoassay for rapid detection of staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim Acta 187(9):1–8

    Google Scholar 

  • Yu H-W, Halonen MJ, Pepper IL (2015) Chapter 12 - Immunological methods. In: PepperC IL, Gerba P, Gentry TJ (eds) Environmental microbiology, 3rd edn. Academic Press, San Diego, pp 245–269

    Google Scholar 

  • Yu W, Zhang T, Ma M, Chen C, Liang X, Wen K, Wang Z, Shen J (2018) Highly sensitive visual detection of amantadine residues in poultry at the ppb level: a colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation. Anal Chim Acta 1027:130–136

    CAS  PubMed  Google Scholar 

  • Yu W, Sang Y, Wang T, Liu W, Wang X (2020) Electrochemical immunosensor based on carboxylated single-walled carbon nanotube-chitosan functional layer for the detection of cephalexin. Food Sci Nutr 8(2):1001–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Deng D, Lauren D, Aguilar M-I, Wu Y (2009) Surface plasmon resonance biosensor for the detection of ochratoxin a in cereals and beverages. Anal Chim Acta 656:63–71. https://doi.org/10.1016/j.aca.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Shen Y, Shen G, Wang S, Shen G, Yu R (2016a) Electrochemical immunosensor based on pd–au nanoparticles supported on functionalized pdda-mwcnt nanocomposites for aflatoxin b1 detection. Anal Biochem 494:10–15

    CAS  PubMed  Google Scholar 

  • Zhang X, Li C-R, Wang W-C, Xue J, Huang Y-L, Yang X-X, Tan B, Zhou X-P, Shao C, Ding S-J (2016b) A novel electrochemical immunosensor for highly sensitive detection of aflatoxin b1 in corn using single-walled carbon nanotubes/chitosan. Food Chem 192:197–202

    CAS  PubMed  Google Scholar 

  • Zhang L, Salmain M, Liedberg B, Boujday S (2019) Naked eye immunosensing of food biotoxins using gold nanoparticle-antibody bioconjugates. ACS Appl Nano Mater 2(7):4150–4158

    CAS  Google Scholar 

  • Zhang W, Tang S, Jin Y, Yang C, He L, Wang J, Chen Y (2020) Multiplex Sers-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual raman labels and triple test lines. J Hazard Mater 393:122348

    CAS  PubMed  Google Scholar 

  • Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J (2019) A microfluidic colorimetric biosensor for rapid detection of escherichia coli o157: H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron 124:143–149

    PubMed  Google Scholar 

  • Zhou C, Zou H, Li M, Sun C, Ren D, Li Y-X (2018a) Fiber optic surface plasmon resonance sensor for detection of E. coli o157:H7 based on antimicrobial peptides and agnps-rgo. Biosens Bioelectron 117. https://doi.org/10.1016/j.bios.2018.06.005

  • Zhou Y, Huang X, Zhang W, Ji Y, Chen R, Xiong Y (2018b) Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosens Bioelectron 102:9–16

    CAS  PubMed  Google Scholar 

  • Zhu Z (2017) An overview of carbon nanotubes and graphene for biosensing applications. Nano-micro Lett 9(3):1–24

    Google Scholar 

  • Zhu X, Gao T (2019) Chapter 10 - spectrometry. In: Li G (ed) Nano-inspired biosensors for protein assay with clinical applications. Elsevier, pp 237–264

    Google Scholar 

Download references

Acknowledgments

This work acknowledges the support from the Department of Science and Technology, New Delhi, India, in the form of an INSPIRE Faculty Award (DST/INSPIRE/04/2017/002953) and from the Science and Engineering Research Board (SERB), Government of India, under the Early Career Research (ECR) award (File No. ECR/2018/000748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarawagi, N., Vaid, K., Dhiman, J., Johns, T., Kumar, V. (2022). Nanomaterials-Based Immunosensors in Food Analysis. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_11

Download citation

Publish with us

Policies and ethics