Skip to main content
Log in

Closed \({\text {G}}_{2}\)-structures on non-solvable Lie groups

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We investigate the existence of left-invariant closed G\(_2\)-structures on seven-dimensional non-solvable Lie groups, providing the first examples of this type. When the Lie algebra has trivial Levi decomposition, we show that such a structure exists only when the semisimple part is isomorphic to \(\mathfrak {sl}(2,{\mathbb R})\) and the radical is unimodular and centerless. Moreover, we classify unimodular Lie algebras with non-trivial Levi decomposition admitting closed G\(_2\)-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P.: Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl. 7(1), 9–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bock, C.: On low-dimensional solvmanifolds. Asian J. Math. 20(2), 199–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryant, R.L.: Some remarks on G\(_2\)-structures. In: Proceedings of Gökova Geometry–Topology Conference 2005 (GGT), Gökova, pp. 75–109 (2006)

  4. Chu, B.Y.: Symplectic homogeneous spaces. Trans. Am. Math. Soc. 197, 145–159 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cleyton, R., Swann, A.: Cohomogeneity-one G\(_2\)-structures. J. Geom. Phys. 44(2–3), 202–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conti, D., Fernández, M.: Nilmanifolds with a calibrated G\(_2\)-structure. Differ. Geom. Appl. 29(4), 493–506 (2011)

    Article  MATH  Google Scholar 

  7. Cortés, V., Leistner, T., Schäfer, L., Schulte-Hengesbach, F.: Half-flat structures and special holonomy. Proc. Lond. Math. Soc. (2) 102(1), 113–158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crowley, D., Nordström, J.: New invariants of G\(_2\)-structures. Geom. Topol. 19(5), 2949–2992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández, M.: An example of a compact calibrated manifold associated with the exceptional Lie group G\(_2\). J. Differ. Geom. 26(2), 367–370 (1987)

    Article  MATH  Google Scholar 

  10. Fernández, M.: A family of compact solvable \(G_2\)-calibrated manifolds. Tohoku Math. J. (2) 39(2), 287–289 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández, M., Fino, A., Manero, V.: Laplacian flow of closed G\(_2\)-structures inducing nilsolitons. J. Geom. Anal. 26(3), 1808–1837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández, M., Gray, A.: Riemannian manifolds with structure group G\(_{2}\). Ann. Mat. Pura Appl. 4(132), 19–45 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fino, A., Raffero, A.: Closed warped G\(_2\)-structures evolving under the Laplacian flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear). https://doi.org/10.2422/2036-2145.201709_004

  14. Freibert, M.: Calibrated and parallel structures on almost Abelian Lie algebras. arXiv:1307.2542

  15. Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465–504 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hasegawa, K.: Four-dimensional compact solvmanifolds with and without complex analytic structures. arXiv:math/0401413

  17. Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000), Contemporary Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)

  18. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  19. Lauret, J.: Laplacian flow of homogeneous G\(_2\)-structures and its solitons. Proc. Lond. Math. Soc. (3) 114(3), 527–560 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lauret, J.: Laplacian solitons: questions and homogeneous examples. Differ. Geom. Appl. 54(B), 345–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lichnerowicz, A., Medina, A.: On Lie groups with left-invariant symplectic or Kählerian structures. Lett. Math. Phys. 16(3), 225–235 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lotay, J.D., Wei, Y.: Laplacian flow for closed G\(_2\) structures: Shi-type estimates, uniqueness and compactness. Geom. Funct. Anal. 27(1), 165–233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mostow, G.D.: Discrete subgroups of Lie groups. Adv. Math. 16, 112–123 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mubarakzjanov, G.M.: On solvable Lie algebras. Izv. Vysš. Učehn. Zaved. Mat. 32(1), 114–123 (1963)

    MathSciNet  Google Scholar 

  26. Podestà, F., Raffero, A.: On the automorphism group of a closed G\(_2\)-structure. Q. J. Math. (to appear). https://doi.org/10.1093/qmath/hay045

  27. Turkowski, P.: Low-dimensional real Lie algebras. J. Math. Phys. 29(10), 2139–2144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fabio Podestà for useful conversations, and the two anonymous referees for their valuable comments. This work was done when A. R. was a postdoctoral fellow at the Department of Mathematics and Computer Science “U. Dini” of the Università degli Studi di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Raffero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were supported by GNSAGA of INdAM.

Appendix

Appendix

In this “Appendix”, we give some details on the computations we did to prove Propositions 4.7, 4.8, 4.10, 5.1, 5.2. We focus on the case \(\mathfrak {g}= \mathfrak {so}(3)\oplus \mathfrak {aff}({\mathbb R})\oplus \mathfrak {aff}({\mathbb R})\), as in the remaining cases one can proceed similarly.

Let \(\{e_1,\ldots ,e_7\}\) be the basis of \(\mathfrak {g}=\mathfrak {so}(3)\oplus \mathfrak {aff}({\mathbb R})\oplus \mathfrak {aff}({\mathbb R})\) described in the proof of Proposition 4.7. Then, the structure equations of \(\mathfrak {g}\) with respect to the dual basis \(\{e^1,\ldots ,e^7\}\) are the following:

$$\begin{aligned} \left( -e^{23},e^{13},-e^{12},0,-e^{45},0,-e^{67}\right) . \end{aligned}$$

Let us consider a generic 3-form \(\phi = \sum _{1\le i<j<k\le 7} \phi _{ijk}e^{ijk}\in \Lambda ^3(\mathfrak {g}^*)\), where \(\phi _{ijk}\in {\mathbb R}\). The condition \(d\phi =0\) is equivalent to the following system of linear equations in the variables \(\{\phi _{ijk}\}\):

$$\begin{aligned} \left\{ \begin{array}{lc} \phi _{i46}=0,~\phi _{i47}=0,~\phi _{i56}=0,~\phi _{i57}=0, &{}\quad i=1,2,3,\\ \phi _{125}+\phi _{345}=0,~\phi _{127}+\phi _{367}=0,&{} \\ \phi _{135}-\phi _{245}=0,~\phi _{137}-\phi _{267}=0, &{}\\ \phi _{145}+\phi _{235}=0,~\phi _{237}+\phi _{167}=0,&{} \\ \phi _{567}+\phi _{457}=0.&{} \end{array} \right. \end{aligned}$$

Solving this system, we obtain the following expression for the generic closed 3-form \(\phi \) on \(\mathfrak {g}\)

$$\begin{aligned} \phi= & {} \phi _{123}e^{123} +\phi _{124}e^{124} -\phi _{345}e^{125} +\phi _{126}e^{126} -\phi _{367}e^{127} +\phi _{134}e^{134} +\phi _{245}e^{135} \\&+\,\phi _{136}e^{136} +\phi _{267}e^{137} -\phi _{235}e^{145} -\phi _{237}e^{167}+\phi _{234}e^{234} +\phi _{235}e^{235} +\phi _{236}e^{236} \\&+\,\phi _{237}e^{237}+\phi _{245}e^{245} +\phi _{267} e^{267} +\phi _{345}e^{345} + \phi _{367}e^{367}+\phi _{456}e^{456}-\phi _{567}e^{457}\\&+\,\phi _{467}e^{467}+\phi _{567}e^{567}. \end{aligned}$$

Using this, we compute \(\iota _{e_i}\phi \), \(i=1,\ldots ,7,\) and we observe that

$$\begin{aligned} b_\phi (e_5,e_5)= & {} - \phi _{567}\left( {\phi _{235}}^2+{\phi _{245}}^2+{\phi _{345}}^2 \right) e^{1234567}, \\ b_\phi (e_7,e_7)= & {} \phi _{567} \left( {\phi _{237}}^2+{\phi _{267}}^2+{\phi _{367}}^2\right) e^{1234567}. \end{aligned}$$

This implies that \(b_\phi \) cannot be definite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fino, A., Raffero, A. Closed \({\text {G}}_{2}\)-structures on non-solvable Lie groups. Rev Mat Complut 32, 837–851 (2019). https://doi.org/10.1007/s13163-019-00296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-019-00296-0

Keywords

Mathematics Subject Classification

Navigation