Skip to main content
Log in

Exact \(\hbox {G}_{2}\)-structures on unimodular Lie algebras

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider seven-dimensional unimodular Lie algebras \(\mathfrak {g}\) admitting exact G\(_2\)-structures, focusing our attention on those with vanishing third Betti number \(b_3(\mathfrak {g})\). We discuss some examples, both in the case when \(b_2(\mathfrak {g})\ne 0\), and in the case when the Lie algebra \(\mathfrak {g}\) is (2,3)-trivial, i.e., when both \(b_2(\mathfrak {g})\) and \(b_3(\mathfrak {g})\) vanish. These examples are solvable, as \(b_3(\mathfrak {g})=0\), but they are not strongly unimodular, a necessary condition for the existence of lattices on the simply connected Lie group corresponding to \(\mathfrak {g}\). More generally, we prove that any seven-dimensional (2,3)-trivial strongly unimodular Lie algebra does not admit any exact G\(_2\)-structure. From this, it follows that there are no compact examples of the form \((\Gamma \backslash \mathrm {G},\varphi )\), where \(\mathrm {G}\) is a seven-dimensional simply connected Lie group with (2,3)-trivial Lie algebra, \(\Gamma \subset \mathrm {G}\) is a co-compact discrete subgroup, and \(\varphi \) is an exact \(\mathrm {G}_2\)-structure on \(\Gamma \backslash \mathrm {G}\) induced by a left-invariant one on \(\mathrm {G}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonan, E.: Sur les variétés riemanniennes à groupe d’holonomie \(\text{ G }_2\) ou spin\((7)\). C. R. Acad. Sci. Paris 262, 127–129 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525–576 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bryant, R.L.: Some remarks on \(\text{ G }_2\)-structures. In: Proceedings of Gökova Geometry–Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, pp. 75–109 (2006)

  4. Conti, D., Fernández, M.: Nilmanifolds with a calibrated \(\rm G_2\)-structure. Differ. Geom. Appl. 29, 493–506 (2011)

    Article  Google Scholar 

  5. Diatta, A., Manga, B.: On properties of principal elements of Frobenius Lie algebras. J. Lie Theory 24(3), 849–864 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Fernández, M.: An example of a compact calibrated manifold associated with the exceptional Lie group \(\text{ G }_2\). J. Differ. Geom. 26(2), 367–370 (1987)

    Article  Google Scholar 

  7. Fernández, M.: A family of compact solvable \(\text{ G }_2\)-calibrated manifolds. Tohoku Math. J. 39(2), 287–289 (1987)

    Article  MathSciNet  Google Scholar 

  8. Fernández, M., Fino, A., Kovalev, A., Muñoz, V.: A compact \(\text{ G }_2\)-calibrated manifold with first Betti number \(b_1=1\). arXiv:1808.07144 [math.DG]

  9. Fernández, M., Gray, A.: Riemannian manifolds with structure group \(\text{ G }_2\). Ann. di Mat. Pura Appl. 32, 19–45 (1982)

    Article  Google Scholar 

  10. Fino, A., Raffero, A.: Closed \(\text{ G }_2\)-structures on non-solvable Lie groups. Rev. Mat. Complut. 32(3), 837–851 (2019)

    Article  MathSciNet  Google Scholar 

  11. Garland, H.: On the cohomology of lattices in solvable Lie groups. Ann. Math. 84, 174–195 (1966)

    Article  MathSciNet  Google Scholar 

  12. Gray, A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141, 465–504 (1969)

    Article  MathSciNet  Google Scholar 

  13. Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I(8), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  14. Joyce, D.D.: Compact Riemannian 7-manifolds with holonomy \(\text{ G }_2\) I. J. Differ. Geom. 43(II), 291–328 (1996)

    Article  Google Scholar 

  15. Madsen, T.B., Swann, A.: Multi-moment maps. Adv. Math. 229(4), 2287–2309 (2012)

    Article  MathSciNet  Google Scholar 

  16. Madsen, T.B., Swann, A.: Closed forms and multi-moment maps. Geom. Dedic. 165, 25–52 (2013)

    Article  MathSciNet  Google Scholar 

  17. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  18. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 2(59), 531–538 (1954)

    Article  MathSciNet  Google Scholar 

  19. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2–3), 311–333 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by MINECO-FEDER Grant PGC2018-098409-B-100, and Gobierno Vasco Grant IT\(1094-16\), Spain. The second and third author were supported by GNSAGA of INdAM and by the project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics”. The authors are grateful to Thomas Bruun Madsen and Yves Cornulier for useful suggestions and conversations. The second and the third author would like to thank the organizers of the workshop “\(\hbox {G}_2\) manifolds and related topics” (Casa Matemática Oaxaca, May 5–10, 2019), as well as the BIRS and CMO research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Fino.

Additional information

Communicated by Andreas Cap.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

In this “Appendix”, we explicitly write the matrices associated to the endomorphisms \(A_1, A_2, A_3,\) introduced in the proof of Theorem 2.3, in the case when \(\mathfrak {n}=\mathfrak {n}_{\scriptscriptstyle 1}\) and \(\mathfrak {n}=\mathfrak {n}_{\scriptscriptstyle 2}\). For each of these Lie algebras, we write an ordered basis of the cohomology group \(H^k(\mathfrak {n}^*)\), \(k=1,2,3,\) and the matrix associated to \(A_k\) with respect to that basis. For the sake of convenience, we first impose the conditions on \(D\in {{\,\mathrm{Der}\,}}(\mathfrak {n})\) for which \(\mathfrak {g}= \mathfrak {n}\rtimes _D\mathbb {R}\) is strongly unimodular.

1.1 Case \(\mathfrak {n}=\mathfrak {n}_{\scriptscriptstyle 1}\)

For the Lie algebra \(\mathfrak {n}_{\scriptscriptstyle 1}= \left( 0,0,0,0,e^{12},e^{34}\right) \) with generic derivation \(D_1\) given by (2.2), we have that \(\mathfrak {g}=\mathfrak {n}\rtimes _{D_1}\mathbb {R}\) is strongly unimodular if and only if \(a_8=-a_1-a_4-a_5\). In this case, we get

  • \(H^1(\mathfrak {n}_{\scriptscriptstyle 1}) = \langle [e^1],~[e^2],~[e^3],~[e^4]\rangle \),

    $$\begin{aligned} A_1 = -\begin{pmatrix} a_1 &{} a_3 &{} 0 &{} 0 \\ a_2 &{} a_4 &{} 0 &{} 0 \\ 0 &{} 0 &{} a_5 &{} a_7 \\ 0 &{} 0 &{} a_6 &{} -a_1-a_4-a_5 \end{pmatrix}; \end{aligned}$$
  • \(H^2(\mathfrak {n}_{\scriptscriptstyle 1}) = \langle [e^{13}],[e^{14}],[e^{15}], [e^{23}],[e^{24}],[e^{25}],[e^{36}],[e^{46}] \rangle \),

    $$\begin{aligned} A_2 = \left( \begin{array}{cccccccccc} -a_1 - a_5 &{} -a_7 &{} -a_{11} &{} -a_3 &{} 0 &{} 0 &{} a_{13} &{} 0 \\ -a_6 &{} a_4 +a_5. &{} -a_{12} &{} 0 &{} -a_3 &{} 0 &{} 0 &{} a_{13} \\ 0 &{} 0 &{} -2 a_1 -a_4 &{} 0 &{} 0 &{} -a_3 &{} 0 &{} 0\\ -a_2 &{} 0 &{} 0 &{} -a_4 -a_5 &{} -a_7 &{} -a_{11} &{} a_{14} &{} 0\\ 0 &{} -a_2 &{} 0 &{} -a_6 &{}a _1 +a_5 &{} -a_{12} &{} 0 &{} a_{14} \\ 0 &{} 0 &{} -a_2 &{} 0 &{} 0 &{} -2 a_4 -a_1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0&{} 0 &{} 0&{} 0 &{} a_1+a_4 -a_5 &{} -a_7 \\ 0 &{} 0 &{} 0 &{} 0&{} 0 &{} 0 &{} -a_6 &{} 2 a_4 +2 a_1 +a_5 \end{array}\right) ; \end{aligned}$$
  • \(H^3(\mathfrak {n}_{\scriptscriptstyle 1}) = \langle [e^{125}], [e^{135}], [e^{136}], [e^{145}], [e^{146}], [e^{235}], [e^{236}], [e^{245}], [e^{246}], [e^{346}] \rangle \),

    $$\begin{aligned} A_3 =\left( \begin{array}{ccccccccccc} 2 a_4 +2 a_1 &{} 0&{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 2 a_1 +a_5 +a_4 &{} 0 &{} a_6 &{} 0 &{} a_2 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} a_5 {-}a_4 &{} 0 &{} a_6 &{} 0 &{} a_2 &{} 0 &{} 0 &{} 0\\ 0 &{} a_7 &{} 0 &{} a_1 {-}a_5 &{} 0 &{} 0 &{} 0 &{} a_2 &{} 0 &{} 0\\ 0 &{} 0 &{} a_7 &{} 0 &{} {-}2 a_4 {-}a_5 {-}a_1 &{} 0 &{} 0 &{} 0 &{} a_2 &{} 0\\ 0 &{} a_3 &{} 0 &{} 0 &{} 0 &{} 2 a_4 +a_5 +a_1 &{} 0 &{} a_6 &{} 0 &{} 0\\ 0 &{} 0 &{} a_3 &{} 0 &{} 0 &{} 0 &{} a_5 {-}a_1 &{} 0 &{} a_6 &{} 0\\ 0 &{} 0&{} 0 &{} a_3 &{} 0 &{} a_7 &{} 0 &{} a_4 {-}a_5 &{} 0&{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} a_3 &{} 0 &{} a_7 &{} 0 &{} {-}2 a_1 {-}a_5 {-}a_4 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {-}2 a_4 {-}2 a_1 \end{array}\right) . \end{aligned}$$

1.2 Case \(\mathfrak {n}=\mathfrak {n}_{\scriptscriptstyle 2}\)

Consider the Lie algebra \(\mathfrak {n}_{\scriptscriptstyle 2}=\left( 0,0,0,0,e^{13}-e^{24},e^{14}+e^{23}\right) \) with generic derivation \(D_2\) given by (2.3). Then, \(\mathfrak {g}=\mathfrak {n}_{\scriptscriptstyle 2}\rtimes _{D_2}\mathbb {R}\) is strongly unimodular if and only if \(a_7=-a_1\). In this case, we have

  • \(H^1(\mathfrak {n}_{\scriptscriptstyle 2}) = \langle [e^1],~[e^2],~[e^3],~[e^4] \rangle \),

    $$\begin{aligned} A_1 = \begin{pmatrix} -a_1 &{} a_2 &{} -a_5 &{} a_6\\ -a_2 &{} -a_1 &{} -a_6 &{} -a_5\\ -a_3 &{} a_4 &{} a_1 &{} a_8\\ -a_4 &{} -a_3 &{} -a_8 &{} a_1 \end{pmatrix}; \end{aligned}$$
  • \(H^2(\mathfrak {n}_{\scriptscriptstyle 2}) = \langle [e^{12}], [e^{34}], [e^{13}+e^{24}], [e^{14}-e^{23}], [e^{16}+e^{25}], [-e^{15}+e^{26}], [e^{36}+e^{45}], [-e^{35}+e^{46}] \rangle \),

    $$\begin{aligned} A_2 =\left( \begin{array}{cccccccccc} -2 a_1&{} -2 a_6 &{} -2 a_5 &{} a_9-a_{14} &{} a_{10}+a_{13} &{} 0 &{} 0 &{} 0\\ a_4 &{} 0 &{} a_8-a_2 &{} - \frac{1}{2} a_{15} &{} \frac{1}{2} a_{11}- \frac{1}{2} a_{16} &{} -a_6 &{} \frac{1}{2} a_{13}+ \frac{1}{2} a_{10} &{} - \frac{1}{2} a_{9}+ \frac{1}{2} a_{14}\\ -a_3 &{} a_2-a_8 &{} 0 &{} - \frac{1}{2} a_{16} &{} \frac{1}{2} a_{12}+ \frac{1}{2} a_{15} &{} -a[ _5 &{} - \frac{1}{2} a_{14}+ \frac{1}{2} a_9 &{} \frac{1}{2} a_{13}+ \frac{1}{2} a_{10}\\ 0 &{} &{} 0 &{} -a_1 &{} a_8+2 a_2 &{} 0 &{} -a_5 &{} a_6\\ 0 &{} 0 &{} 0 &{} -a_8-2 a_2 &{} -a_1 &{} 0 &{} -a_6 &{} -a_5\\ 0 &{} 2 a_4 &{} -2 a_3 &{} 0 &{} 0 &{} 2 a_1 &{} a_{11} -a_{16} &{} a_{12} +a_{15}\\ 0 &{} 0 &{} 0 &{} -a_3 &{} a_4 &{} 0 &{} a_1 &{} a_2 +2 a_8\\ 0 &{} 0 &{} 0 &{} -a_4 &{} -a_3 &{} 0 &{} -a_2 -2 a_8 &{} a_1 \end{array}\right) ; \end{aligned}$$
  • \(H^3(\mathfrak {n}_{\scriptscriptstyle 2}) = \langle [e^{125}], [e^{126}], [e^{345}], [e^{346}], [-e^{135}+e^{146}], [-e^{135}+e^{236}], [e^{135}+e^{245}], [e^{136}+e^{246}], [e^{145}-e^{246}], [e^{235}-e^{246}] \rangle \),

    $$\begin{aligned} A_3 = \left( \begin{array}{cccccccccc} -2 a_1 &{} 0&{} 0 &{} -a_4 &{} -a_4&{} 0 &{} -a_3 &{} 0 &{} -a_4 &{} a_2+a_8\\ 0 &{} -2a_1 &{} -a_2-a_8 &{} a_5 &{} -a_6 &{} -2 a_5 &{} -a_6 &{} 2 a_6 &{} -a_5 &{} 0\\ 0 &{} a_2+a_8 &{} 2 a_1&{} a_6 &{} a_5&{} 0 &{} -a_5 &{} 0 &{} -a_6 &{} 0\\ a_6 &{} 0 &{} a_4&{} 0 &{} -a_2 -2 a_8 &{} 0 &{} -a_8 -2 a_2 &{} a_2+a_8&{} 0 &{} 0\\ a_5&{} 0 &{} a_3 &{} a_2+2a_8 &{} 0 &{} -a_2-a_8&{} 0 &{} 0 &{} -a_8-2 a_2 &{} 0\\ 0 &{} -a_3 &{} 0 &{} 0 &{} -a_2&{} 0 &{} -a_8 -2 a_2 &{} a_2-a_8 &{} 0 &{} -a_5\\ -a_5 &{} 0 &{} -a_3&{} a_2 &{} 0 &{} a_2+a_8 &{} 0 &{} 0 &{} -a_8 &{} 0\\ 0 &{} -a_4 &{} 0 &{} a_2 &{} 0 &{} -a_2+a_8 &{} 0 &{} 0 &{} -a_8 -2 a_2 &{} a_6\\ -a_6 &{} 0 &{} a_4 &{} 0 &{} a_2 &{} 0 &{} a_8 &{} a_2+a_8&{} 0 &{} 0\\ -a_2-a_8 &{} 0 &{} 0 &{} a_3 &{} a_3 &{} -2 a_3 &{} a_4&{} -2 a_4 &{} -a_3 &{} -2 a_1 \end{array}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, M., Fino, A. & Raffero, A. Exact \(\hbox {G}_{2}\)-structures on unimodular Lie algebras. Monatsh Math 193, 47–60 (2020). https://doi.org/10.1007/s00605-020-01429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01429-0

Keywords

Mathematics Subject Classification

Navigation