Skip to main content
Log in

On the viscosity solutions to a class of nonlinear degenerate parabolic differential equations

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this work, we show existence and uniqueness of positive solutions of \(H(Du, D^2u)+\chi (t)|Du|^\Gamma -f(u)u_t=0\) in \(\Omega \times (0, T)\) and \(u=h\) on its parabolic boundary. The operator H satisfies certain homogeneity conditions, \(\Gamma >0\) and depends on the degree of homogeneity of \(H, f>0\), increasing and meets a concavity condition. We also consider the case \(f\equiv 1\) and prove existence of solutions without sign restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, T., Marazzi, L.: On the viscosity solutions to a degenerate parabolic differential equation. Ann. Mat. Pura Appl. 194(5), 1423–1454 (2014). doi:10.1007/s10231-014-0427-1

  2. Bhattacharya, T., Marazzi, L.: On the viscosity solutions to Trudinger’s equation. Nonlinear Differ. Equ. Appl. (NoDEA) 22(5), 1089–1114 (2015). doi:10.1007/s00030-015-0315-4

  3. Bhattacharya, T., Marazzi, L.: Asymptotics of viscosity solutions to some doubly nonlinear parabolic equations. J. Evol. Equ. 16(4), 759–788 (2016). doi:10.1007/s00028-015-0319-x

  4. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demengel, F.: Existence results for parabolic problems related to fully non linear operators degenerate or singular. Potential Anal. 35(1), 1–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, 2nd edn. Springer, Berlin (1998)

  8. Kawohl, B., Juutinen, P.: On the evolution equation governed by the infinity-Laplacian. Math. Ann. 335(4), 819–851 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Trudinger, N.S.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21, 205–226 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilak Bhattacharya.

Appendix

Appendix

We discuss a maximum principle that applies to the case where f is a positive continuous function. No sign conditions are imposed on the sub-solutions and super-solutions.

Recall Conditions A and B, (1.2)–(1.6). From (1.5), we have

$$\begin{aligned} m_{\min }(\lambda )=\inf _{|e|=1}H(e, I-\lambda e\otimes e),\;\;\mu _{\max }=\sup _{|e|=1}H(e, \lambda e\otimes e-I) \end{aligned}$$

and \(m(\lambda )=\min (m_{\min }(\lambda ),\;-\mu _{\max }(\lambda )).\) In place of Condition C, we assume that

$$\begin{aligned} m(0)>0\;\;\text{ and }\;\;\lim _{\lambda \rightarrow -\infty }m(\lambda )=\infty . \end{aligned}$$
(8.1)

Recall the notation, \(\hat{H}(p,X)=-H(p, -X),\;\forall (p,X)\in \mathbb {R}^n\times S^n\), see Remark 1.1.

Lemma 8.1

(Weak Maximum Principle) Let \(\Omega \subset \mathbb {R}^n,\;n\ge 2\), be a bounded domain and \(T>0\). Suppose that H satisfies Conditions A, B and (8.1). Suppose that \(\chi :[0,T]\rightarrow \mathbb {R}\) and \(f:\mathbb {R}\rightarrow [0,\infty )\) and \(f\not \equiv 0,\) are continuous functions.

Let \(\Gamma >0\) and \(\phi \in usc(lsc)(\Omega _T\cup P_T)\) solve

$$\begin{aligned} H(D\phi , D^2\phi )+\chi (t)|D\phi |^\Gamma - f(\phi ) \phi _t\ge (\le ) 0,\;\;\text{ in } \Omega _T. \end{aligned}$$
  1. (a)

    If \(\Gamma \ge k\) then \(\sup _{\Omega _{T}}\phi \le \sup _{P_T} \phi =\sup _{\Omega _T\cup P_T}\phi \;(\inf _{\Omega _T} \phi \ge \inf _{P_T}\phi =\inf _{\Omega _T\cup P_T}\phi ).\)

  2. (b)

    If \(0<\Gamma <k\) and \(\inf f>0\) then the conclusion in (a) holds.

  3. (c)

    If \(\chi \equiv 0\) then the conclusion in (a) holds even if \(\inf f=0\).

Proof

Let \(0<{\hat{\tau }}<\tau <T, \Omega _{{\hat{\tau }},\tau }=\Omega \times [{\hat{\tau }}, \;\tau ]\) and P the parabolic boundary of \(\Omega _{{\hat{\tau }},\tau }\). Our goal is to prove the weak maximum principle in \(\Omega _{{\hat{\tau }},\tau }\) for any \(0<{\hat{\tau }}<\tau <T\) and then extend it to \(\Omega _T\). Note that u is bounded from above in \({{{\overline{\Omega }}}_{{\hat{\tau }},\tau }}\) since \(u\in usc(\Omega _T\cup P_T)\).

Choose \(z\in \mathbb {R}^n{\setminus }\Omega \) and \(R>0\) such that \(\Omega \subset B_{R}(z){{\setminus }} B_{R/2}(z)\). Call \(r=|x-z|\); clearly, \(R/2\le r\le R,\;\forall x\in \Omega \).

Set

$$\begin{aligned}&\vartheta =\sup _{\Omega _{{\hat{\tau }},\tau }} \phi ,\;\;\;\ell =\sup _{P}\phi ,\;\;\;\delta =\vartheta -\ell ,\;\;\;c=\sup _{{\overline{\Omega }}}\phi (x,\tau ),\;\;\eta =\max (\delta ,\;\;c-\ell )\;\nonumber \\&\quad \text{ and }\;\;\;\nu =\max (c,\; \vartheta ,\;\ell ). \end{aligned}$$
(8.2)

We recall from Remark 2.2(ii) and (6.4)(ii) that if \(v=a-br^\beta \), where \(b>0\) and \(\beta >0\), then

$$\begin{aligned} -\frac{\left( b\beta \right) ^k}{ r^{\gamma -\beta k}}\mu (2-\beta )\le H(Dv, D^2v)\le -\frac{\left( b\beta \right) ^k}{ r^{\gamma -\beta k}} m(2-\beta ). \end{aligned}$$
(8.3)

We argue by contradiction and assume that \(\delta >0.\) Since \(\Omega _{{\hat{\tau }},\tau }\) is an open set there is a point \((\xi ,\theta )\in {\Omega _{{\hat{\tau }},\tau } }\) such that \(\phi (\xi ,\theta )>\ell +3\delta /4\) and \(0<{\hat{\tau }}<\theta <\tau \). Define

$$\begin{aligned} g(t)=0,\;\;\forall t\in [{\hat{\tau }},\;\theta ]\;\;\;\text{ and }\;\;\;g(t)=(t-\theta )^4/(\tau -\theta )^4,\;\;\forall t\in [\theta ,\;\tau ]. \end{aligned}$$

Select \(0<\varepsilon \le \min (0.5,\;\delta /4).\) For \(\beta >0\), set

$$\begin{aligned} \psi (x,t)=\psi (r,t)=\ell +\frac{\varepsilon }{4} +\eta g(t)-\frac{\varepsilon r^\beta }{32R^\beta },\;\;\forall (x,t)\in {\overline{\Omega }}_{{\hat{\tau }},\tau }. \end{aligned}$$

Thus, \(\psi (x,t)\ge \ell +\varepsilon /8,\;\forall (x,t)\in {\overline{\Omega }}_{{\hat{\tau }},\tau },\) and \(\psi (x,\tau )\ge \ell +\eta +\varepsilon /8\ge c+\varepsilon /8,\;\forall x\in {\overline{\Omega }}\). Moreover,

$$\begin{aligned} \phi (\xi ,\theta )-\psi (\xi , \theta )\ge \ell +\frac{3\delta }{4}-\ell -\frac{\varepsilon }{4}=\frac{3\delta }{4}-\frac{\varepsilon }{4} \ge \frac{\delta }{4}>0. \end{aligned}$$
(8.4)

Since \(\phi -\psi \le 0\) on \(\partial {\overline{\Omega }}_{{\hat{\tau }},\tau }\) and \((\phi -\psi )(\xi , \theta )>0\), the function \(\phi -\psi \) has a positive maximum at some point \((y,s)\in \Omega _{{\hat{\tau }},\tau }\).

Set \(B_0=\sup _{[0,T]}|\chi (t)|\), call \(\rho =|y-z|\) and use (8.3) to get

$$\begin{aligned}&H\left( D\psi (y,s), D^2\psi (y,s)\right) +\chi (s)|D\psi (y,s)|^\Gamma \nonumber \\&\quad \le -\left( \frac{\varepsilon \beta }{32 R^\beta }\right) ^k \frac{m(2-\beta )}{\rho ^{\gamma -\beta k}}+{B_0} \left( \frac{\varepsilon \beta }{32R^\beta }\right) ^\Gamma \rho ^{(\beta -1)\Gamma }\nonumber \\&\quad =\rho ^{\beta k-\gamma }\left( \frac{\varepsilon \beta }{32 R^\beta }\right) ^k\left[ {B_0} \left( \frac{\varepsilon \beta }{32R^\beta }\right) ^{\Gamma -k} \rho ^{\gamma -\Gamma +\beta (\Gamma -k)}-m(2-\beta )\right] \nonumber \\&\quad =\rho ^{\beta k-\gamma }\left( \frac{\varepsilon \beta }{32 R^\beta }\right) ^k\left[ {B_0} \left( \frac{\varepsilon \beta }{32} \left( \frac{\rho }{R}\right) ^\beta \right) ^{\Gamma -k} \rho ^{\gamma -\Gamma }-m(2-\beta )\right] \end{aligned}$$
(8.5)

Call I the right hand side of the third line in (8.5) and note that \(1/2\le \rho /R\le 1\). We now show part (a) of the lemma. Note that \(\psi _t(y,s)\ge 0\).

  1. (i)

    If \(\Gamma >k\) then taking \(\beta =2\) (see (8.1)) and \(\varepsilon \) small enough we can make \(I<0\). We conclude from (8.5) that \(I<0\le f(\phi (y,s))\psi _t(y,s)\) implying that the lemma holds for \(0<{\hat{\tau }}<\tau <T.\)

  2. (ii)

    If \(\Gamma =k\) then \(\gamma -k=k_2\) (see (1.3) and (1.4)). Taking \(\beta \) large and using (8.1) we can make \(I<0\). We conclude from (8.5) that \(I<0\le f(\phi (y,s))\psi _t(y,s)\) implying that the lemma holds for \(0<{\hat{\tau }}<\tau <T.\)

Taking \(B_0=0\) and arguing as above we get part (c) of the lemma.

To see part (b), set \(\omega =\inf f\) and modify \(g(t)=(t/\tau )^\alpha \), where \(\alpha \) is large so that \(\eta g(\theta )\le \varepsilon /8\). Since \(\varepsilon \le \delta /4\), this ensures that in (8.4)

$$\begin{aligned} \phi (\xi ,\theta )-\psi (\xi , \theta )\ge \ell +\frac{3\delta }{4}-\left( \ell +\frac{\varepsilon }{4}+\eta g(\theta )\right) \ge \frac{3\delta }{4}-\frac{\varepsilon }{4} -\frac{\varepsilon }{8}\ge \frac{\delta }{4}>0. \end{aligned}$$

Using (8.5) estimate I (disregard the second term in the parenthesis) as

$$\begin{aligned} I\le A \left( \frac{\varepsilon \beta }{32R^\beta }\right) ^\Gamma \rho ^{(\beta -1)\Gamma }=\frac{A}{\rho ^\Gamma }\left( \frac{\varepsilon \beta \rho ^\beta }{32R^\beta }\right) ^\Gamma \le 2^\Gamma A \left( \frac{\beta }{32}\right) ^\Gamma \frac{\varepsilon ^\Gamma }{R^\Gamma }. \end{aligned}$$

Next, \(\psi _t(y,s)=\alpha \eta s^{\alpha -1}/\tau ^\alpha \ge \alpha \eta {\hat{\tau }}^{\alpha -1}/\tau ^\alpha \) implying that

$$\begin{aligned} I-f(\phi (y,s))\psi _t(y,s)\le 2^\Gamma A\left( \frac{\beta }{32}\right) ^\Gamma \frac{\varepsilon ^\Gamma }{R^\Gamma }-\alpha {\omega } \eta \left( {\hat{\tau }}^{\alpha -1}/\tau ^\alpha \right) <0, \end{aligned}$$

if R is chosen large enough. Using (8.5), we get a contradiction and \(\phi \le \ell \) in \(\Omega _{{\hat{\tau }}, \tau }.\)

If \(\sup _{\Omega _T}\phi >\sup _{P_T} \phi \) then there is a point \((y,s)\in \Omega _T\) (with \(0<s<T\)) such that \(\phi (y,s)>\sup _{P_T} \phi \). Select \(0<\hat{s}<s<{\bar{s}}<T\) and call P the parabolic boundary of \(\Omega _{\hat{s},{\bar{s}}}\). Then, \(\sup _{P_T}\phi <\phi (y,s)\le \sup _{\Omega _{\hat{s},{\bar{s}}}}\phi \le \sup _{P}\phi \le \sup _{P_T}\phi .\) This is a contradiction and the lemma holds.

To show the weak minimum principle, take \(v=-\phi \) and conclude that \(H(-Dv, -D^2v)\le f(-v)(-v_t)\). If \(\hat{f}(v)=f(-v)\) then (1.3) shows that \(\hat{H}(Dv, D^2v)\ge {\tilde{f}}(v)v_t\). As noted in Remark 1.1, \(\hat{H}\) satisfies Conditions A, B and (8.1) and the minimum principle follows. \(\square \)

Remark 8.2

Suppose that u solves \(H(Du, D^2u)+\chi (t)|Du|^\Gamma -f(u)u_t=g(x,t),\) where \(L=\sup _{\Omega _T}|g|<\infty \) and \(\omega =\inf _{\mathbb {R}} f>0\). Using \(u\pm \ell t, \ell \ge L/\omega \) large, one gets \(\inf _{P_T}(u+\ell t)-\ell t\le u\le \sup _{P_T}(u-\ell t)+\ell t.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, T., Marazzi, L. On the viscosity solutions to a class of nonlinear degenerate parabolic differential equations. Rev Mat Complut 30, 621–656 (2017). https://doi.org/10.1007/s13163-017-0229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-017-0229-2

Keywords

Mathematics Subject Classification

Navigation