Skip to main content

Advertisement

Log in

Canopy Leaf Area Index in Non-Forested Marshes of the California Delta

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Leaf area index (LAI, one-sided leaf area per unit ground area) is an important parameter in models of canopy-atmosphere carbon exchange and greenhouse gas fluxes that has been disproportionately under-studied in wetland ecosystems. This study assessed variation in LAI and its sensitivity to canopy height, structure and remotely sensed normalized difference vegetation index (NDVI) in the California Delta, USA in July–August 2014. Plant area index (PAI), an optically measured LAI proxy, significantly varied among wetland sites and vegetation types (p < 0.001). PAI significantly correlated with leaf inclination angle and above-water heights of canopy and standing litter, being on average higher in taller freshwater reeds with steeper leaf angles. Presence of litter contributed to within-site heterogeneity and overestimation of PAI at direct green LAI < 3. Although satellite-based NDVI strongly correlated with PAI (R2 = 0.63, p < 0.001), its application was constrained by presence of water and other non-vegetated backgrounds in wetland pixels. Overall, high within-site variation in LAI resulting from structural heterogeneity and/or vegetation diversity limits representativeness of mean LAI for ecosystem models. This constraint calls for more in-depth future analyses of the effects of vertical and horizontal wetland complexity on LAI measurements and performance as an indicator of light interception and canopy-based ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asner GP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205. doi:10.1046/j.1466-822X.2003.00026.x

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, et al. (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

    Article  Google Scholar 

  • Baldwin AH, Pendleton FN (2003) Interactive effects of animal disturbance and elevation on vegetation of a tidal freshwater marsh. Estuaries 26:905–915. doi:10.1007/BF02803349

    Article  Google Scholar 

  • Berezowski T, Kosmider J, Greczuk M, Chormanski J (2015) LAI variability as a habitat feature determining reptile occurrence: a case study in large Forest complexes in eastern Poland. Forests 6:957–972. doi:10.3390/f6040957

    Article  Google Scholar 

  • Bojinski S, Verstraete M, Peterson TC, et al. (2014) The concept of essential climate variables in support of climate research, applications, and policy. Bull Am Meteorol Soc 95:1431–1443. doi:10.1175/BAMS-D-13-00047.1

    Article  Google Scholar 

  • Breda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417. doi:10.1093/jxb/erg263

    Article  CAS  PubMed  Google Scholar 

  • Bresciani M, Sotgia C, Fila GL, et al. (2011) Assessing common reed bed health and management strategies in Lake Garda (Italy) by means of leaf area index measurements. Italian J Remote Sensing-Rivista Italiana Di Telerilevamento 43:9–22. doi:10.5721/ItJRS20114321

    Article  Google Scholar 

  • Byrd KB, O’Connell JL, Di Tommaso S, Kelly M (2014) Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sens Environ 149:166–180. doi:10.1016/j.rse.2014.04.003

    Article  Google Scholar 

  • CA DWR, USBR (2015) Bay Delta Conservation Plan: Recirculated Draft Environmental Impact Report/Supplemental Draft Environmental Impact Statement (RDEIR/SDEIS) 2015. ICF 00139.14. California Department of Water Resources, The U.S. Bureau of Reclamation.

  • Coelho JJ, Dubeux JCB, Santos ERS, et al (2014) Canopy height and its relationship with leaf area index and light interception in tropical grasses. Tropical Grasslands - Forrajes Tropicales 2:31–32. doi:10.17138/TGFT(2)31–32

  • Dabrowska-Zielinska K, Budzynska M, Tomaszewska M, et al. (2014) Monitoring wetlands ecosystems using ALOS PALSAR (L-band, HV) supplemented by optical data: a case study of Biebrza wetlands in Northeast Poland. Remote Sens 6:1605–1633. doi:10.3390/rs6021605

    Article  Google Scholar 

  • Davis MA, Peterson DW, Reich PB, et al. (2000) Restoring savanna using fire: impact on the breeding bird community. Restor Ecol 8:30–40. doi:10.1046/j.1526-100x.2000.80005.x

    Article  Google Scholar 

  • Dronova I, Bergen KM, Ellsworth DS (2011) Forest canopy properties and variation in aboveground net primary production over upper Great Lakes landscapes. Ecosystems 14:865–879. doi:10.1007/s10021-011-9451-9

    Article  Google Scholar 

  • Ellsworth D, Reich P (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178. doi:10.1007/BF00317729

    Article  Google Scholar 

  • Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525. doi:10.1046/j.1469-8137.2003.00765.x

    Article  Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412. doi:10.1890/08-0485.1

    Article  PubMed  Google Scholar 

  • Galzerano L, Malheiros EB, da Morgado ES, Ruggieri AC (2012) Light interception and leaf area index in relation to canopy height grasses. Nucleus Animalium 4:11–18. doi:10.3738/1982.2278.742

    Article  Google Scholar 

  • Gamon J, Field C, Goulden M, et al. (1995) Relationships between NDVI, canopy structure, and photosynthesis in 3 Californian vegetation types. Ecol Appl 5:28–41. doi:10.2307/1942049

    Article  Google Scholar 

  • Gilmore MS, Wilson EH, Barrett N, et al. (2008) Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens Environ 112:4048–4060

    Article  Google Scholar 

  • Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems. Remote Sens Environ 70:29–51. doi:10.1016/S0034-4257(99)00056-5

    Article  Google Scholar 

  • Hickson D, Keeler-Wolf T (2007) Vegetation and land-use classification and map of the Sacramento-San Joaquin River Delta. Report to the Bay Delta region of the California. Dept. of Fish and Game, Sacramento, CA, USA

    Google Scholar 

  • Hollinger DY, Ollinger SV, Richardson AD, et al. (2010) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob Chang Biol 16:696–710. doi:10.1111/j.1365-2486.2009.02028.x

    Article  Google Scholar 

  • Li-COR Inc. (2014) LAI-2200C Plant Canopy Analyzer Instruction Manual. Publication No. 984-14112. Li-COR Biosciences, Lincoln, Nebraska, USA. pp 256

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forest. Encyclopedia of Plant Physiology New Series, Physological Plant Ecology IV (Ed. by O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler). Springer-Verlag, Berlin, pp 233–280

  • Jervis R (1969) Primary production in freshwater marsh ecosystem of Troy Meadows, New Jersey. Bulletin of the Torrey Botanical Club 96:209–&. doi:10.2307/2483335

    Article  Google Scholar 

  • Jones R (1968) Estimating productivity and apparent photosynthesis from differences in consecutive measurements of total living plant parts of an Australian heathland. Australian Journal of Botany 16:589–&. doi:10.1071/BT9680589

    Article  Google Scholar 

  • Jordan T, Whigham D, Correll D (1990) Effects of nutrient and litter manipulations on the narrow-leaved cattail, Typha angustifolia L. Aquat Bot 36:179–191. doi:10.1016/0304-3770(90)90081-U

    Article  Google Scholar 

  • Kearney MS, Stutzer D, Turpie K, Stevenson JC (2009) The effects of tidal inundation on the reflectance characteristics of coastal marsh vegetation. J Coast Res 25:1177–1186. doi:10.2112/08-1080.1

    Article  Google Scholar 

  • Klemas V (2013) Using remote sensing to select and monitor wetland restoration sites: an overview. J Coast Res 29:958–970

    Article  Google Scholar 

  • Knox SH, Sturtevant C, Matthes JH, et al. (2015) Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Glob Chang Biol 21:750–765. doi:10.1111/gcb.12745

    Article  PubMed  Google Scholar 

  • Kobayashi H, Ryu Y, Baldocchi DD, et al. (2013) On the correct estimation of gap fraction: how to remove scattered radiation in gap fraction measurements? Agric For Meteorol 174:170–183. doi:10.1016/j.agrformet.2013.02.013

    Article  Google Scholar 

  • Kucharik CJ, Norman JM, Gower ST (1998) Measurements of branch area and adjusting leaf area index indirect measurements. Agric For Meteorol 91:69–88. doi:10.1016/S0168-1923(98)00064-1

    Article  Google Scholar 

  • Matthes JH, Sturtevant C, Verfaillie J, et al. (2014) Parsing the variability in CH4 flux at a spatially heterogeneous wetland: integrating multiple eddy covariance towers with high-resolution flux footprint analysis. Journal of Geophysical Research-Biogeosciences 119:1322–1339. doi:10.1002/2014JG002642

    Article  CAS  Google Scholar 

  • Merrill A, Siegel S, Morris B, et al (2010) Greenhouse gas reduction and environmental benefits in the Sacramento-San Joaquin Delta: advancing carbon capture wetland farms and exploring potential for low carbon agriculture. Prepared for The Nature Conservancy, Sacramento, California. Available at http://www.stillwatersci.com/resources/2010merrilletal_deltacarbon.pdf. Accessed 11 Nov 2014

  • Miller RL (2011) Carbon gas fluxes in Re-established wetlands on organic soils differ relative to plant community and hydrology. Wetlands 31:1055–1066. doi:10.1007/s13157-011-0215-2

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, et al. (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. doi:10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Moffett KB, Gorelick SM (2013) Distinguishing wetland vegetation and channel features with object-based image segmentation. Int J Remote Sens 34:1332–1354

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Japanese J Botany 14:22–52

    Google Scholar 

  • Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567. doi:10.1093/aob/mci052

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-Mateos D, Power ME, Comin FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:e1001247. doi:10.1371/journal.pbio.1001247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myneni R, Williams D (1994) On the relationship between FAPAR and NDVI. Remote Sens Environ 49:200–211. doi:10.1016/0034-4257(94)90016-7

    Article  Google Scholar 

  • Myneni R, Asrar G, Wall G, et al. (1986) Canopy architecture, irradiance distribution on leaf surfaces and consequent photosynthetic efficiencies in heterogeneous plant canopies. 2. Results and discussion. Agric For Meteorol 37:205–218. doi:10.1016/0168-1923(86)90031-6

    Article  Google Scholar 

  • Myneni RB, Nemani RR, Running SW (1997) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–1393. doi:10.1109/36.649788

    Article  Google Scholar 

  • Nagler PL, Glenn EP, Thompson TL, Huete A (2004) Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the lower Colorado River. Agric For Meteorol 125:1–17. doi:10.1016/j.agrformet.2004.03.008

    Article  Google Scholar 

  • Nagler PL, Glenn EP, Hinojosa-Huerta O (2009) Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens Environ 113:1473–1485. doi:10.1016/j.rse.2008.06.018

    Article  Google Scholar 

  • O’Connell JL, Byrd KB, Kelly M (2014) Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus. PLoS One 9:e90870. doi:10.1371/journal.pone.0090870

    Article  PubMed  PubMed Central  Google Scholar 

  • Owen KE, Tenhunen J, Reichstein M, et al. (2007) Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob Chang Biol 13:734–760. doi:10.1111/j.1365-2486.2007.01326.x

    Article  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen J-P, et al. (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci U S A 112:4594–4599. doi:10.1073/pnas.1416267112

    Article  PubMed  PubMed Central  Google Scholar 

  • Piedade M, Long S, Junk W (1994) Leaf and canopy photosynthetic CO2 uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain. Are the high potential rates associated with the C4 syndrome realized under the near-optimal conditions provided by this exceptional natural habitat? Oecologia 97:193–201. doi:10.1007/BF00323149

    Article  Google Scholar 

  • Pisek J, Ryu Y, Alikas K (2011) Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies. Trees-Structure and Function 25:919–924. doi:10.1007/s00468-011-0566-6

    Article  Google Scholar 

  • Ramsey E, Nelson G, Baarnes F, Spell R (2004) Light attenuation profiling as an indicator of structural changes in coastal marshes. In: Lunetta R, Lyon J (eds) Remote Sensing and GIS Accuracy Assessment, editors edn. CRC Press, New York, pp. 59–73

    Chapter  Google Scholar 

  • Ramsey E, Rangoonwala A, Chi Z, et al. (2014) Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data. Remote Sens Environ 152:364–374. doi:10.1016/j.rse.2014.07.002

    Article  Google Scholar 

  • Ramsey E, Rangoonwala A, Jones CE, Bannister T (2015) Marsh canopy leaf area and orientation calculated for improved marsh structure mapping. Photogramm Eng Remote Sens 81:807–816

    Article  Google Scholar 

  • Rocha AV, Potts DL, Goulden ML (2008) Standing litter as a driver of interannual CO(2) exchange variability in a freshwater marsh. Journal of Geophysical Research-Biogeosciences 113:G04020. doi:10.1029/2008JG000713

    Google Scholar 

  • Sadro S, Gastil-Buhl M, Melack J (2007) Characterizing patterns of plant distribution in a southern California salt marsh using remotely sensed topographic and hyperspectral data and local tidal fluctuations. Remote Sens Environ 110:226–239. doi:10.1016/j.rse.2007.02.024

    Article  Google Scholar 

  • Schile LM, Byrd KB, Windham-Myers L, Kelly M (2013) Accounting for non-photosynthetic vegetation in remote-sensing-based estimates of carbon flux in wetlands. Remote Sensing Letters 4:542–551. doi:10.1080/2150704X.2013.766372

    Article  Google Scholar 

  • Spanglet HJ, Ustin SL, Rejmankova E (1998) Spectral reflectance characteristics of California subalpine marsh plant communities. Wetlands 18:307–319

    Article  Google Scholar 

  • Tripathee R, Schaefer KVR (2015) Above- and belowground biomass allocation in four dominant salt marsh species of the eastern United States. Wetlands 35:21–30. doi:10.1007/s13157-014-0589-z

    Article  Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE, et al. (1999) Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ 70:52–68. doi:10.1016/S0034-4257(99)00057-7

    Article  Google Scholar 

  • Weiss M, Baret F, Smith GJ, et al. (2004) Review of methods for in situ leaf area index (LAI) determination part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53. doi:10.1016/j.agrformet.2003.08.001

    Article  Google Scholar 

  • Yuan Y, Wang X, Yin F, Zhan J (2013) Examination of the quantitative relationship between vegetation canopy height and LAI. Adv Meteorol 964323. doi:10.1155/2013/964323

Download references

Acknowledgments

This research was funded by the Delta Science/California Sea Grant Fellowship #R/SF-52. We thank Bryan Brock (California Department of Water Resources) and Patrick Graham, Sarah Estrella and Laureen Thompson (Grizzly Island Wildlife Area, California Department of Fish and Wildlife) for the help with access and selection of field sites. We thank Lisamarie Windham-Myers and Kristin Byrd from the U.S. Geological Survey for the advice and allometric equations for direct LAI in freshwater wetlands. We also thank Dennis Baldocchi, Sara Knox, Joseph Verfaillie, Cove Sturtevant, Laurie Coteen and Patty Oikawa at UC Berkeley’s Biometeorology Lab for research advice. We thank Clifford Wang, Christina Lew, Terrance Wang, Pascal Polonik and Kateryna Dronova for the assistance with 2014 field surveys. Finally, we thank two anonymous reviewers for their time and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Dronova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dronova, I., Taddeo, S. Canopy Leaf Area Index in Non-Forested Marshes of the California Delta. Wetlands 36, 705–716 (2016). https://doi.org/10.1007/s13157-016-0780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0780-5

Keywords

Navigation