Skip to main content
Log in

Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. B., J. Lee, and E. S. Im, 2012: The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J. Meteor. Soc. Japan, 90, 493–507.

    Article  Google Scholar 

  • Ahn, J. B., Y. W. Choi, S. R. Jo, and J. Y. Hong, 2014: Projection of 21st Century Climate over Korean Peninsula: Temperature and Precipitation Simulated by WRFV3.4 Based on RCP4.5 and 8.5 scenarios. Atmosphere, 24, 541–554 (in Korean with English abstract).

    Article  Google Scholar 

  • Baek, H. J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under Representative Concentration Pathways. Asia-Pac. J. Atmos. Sci., 49, 603–618.

    Article  Google Scholar 

  • Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190–202.

    Article  Google Scholar 

  • Collins, M., and Coauthors, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al. Eds., Cambridge University Press, 1029–1136.

    Google Scholar 

  • Dosio, A., H. J. Panitz, M. Schubert-Frisius, and D. Lüthi, 2015: Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim. Dynam., 44, 2637–2661.

    Article  Google Scholar 

  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: HESS Opinions “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 3391–3404.

    Article  Google Scholar 

  • Emmanouil, F., D. Philippe, and S. Bastin, 2013: Dynamical downscaling of IPSL-CM5 CMIP5 historical simulations over the Mediterranean: benefits on the representation of regional surface winds and cyclogenesis. Clim. Dynam., 40, 2497–2513.

    Article  Google Scholar 

  • Fisher, R. A. and L. H. C. Tippett, 1928: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc,. 24, 180–190.

    Article  Google Scholar 

  • Fowler, H. J., M. Ekström, S. Blenkinsop, and A. P. Smith, 2007: Estimating change in extreme European precipitation using a multimodel ensemble. J. Geophys. Res., 112, D18104, doi:10.1029/2007-JD008619.

    Article  Google Scholar 

  • Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L. Vidale, 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108, 4124, doi:10.1029/2002JD002287.

    Article  Google Scholar 

  • Gutowski, W. J., K. A. Kozak, R. W. Arritt, J. H. Christensen, J. C. Patton, and E. S. Takle, 2007: A possible constraint on regional precipitation intensity changes under global warming. J. Hydrometeor., 8, 1382–1396.

    Article  Google Scholar 

  • Hanel, M., and T. A. Buishand, 2011: Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin. Clim. Dynam., 36, 1135–1153.

    Article  Google Scholar 

  • Harding, K. J., P. K. Snyder, and S. Liess, 2013: Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models, J. Geophys. Res., 118, 522–536.

    Google Scholar 

  • Heinrich, G., and A. Gobiet, 2011: The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol., 32, 1951–1970.

    Article  Google Scholar 

  • Hong, J. Y., and J. B. Ahn, 2015: Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations. J. Climate, 28, 3557–3578.

    Article  Google Scholar 

  • Hong, S. Y., S. G. Oh, M. S. Suh, D. K. Lee, J. B. Ahn, and H. S. Kang, 2013: Future Climate Changes over North-East Asian Region Simulated by RegCM4 Based on the RCP Scenarios. Clim. Res., 8, 27–44 (in Korean with English abstract).

    Google Scholar 

  • Hosking, J. R. M., and J. R. Wallis, 1997: Regional frequency analysis: an approach based on L-moments. Cambridge University Press, 224 pp.

    Book  Google Scholar 

  • Im, E. S., E. H. Park, W. T. Kwon, and F. Giorgi, 2006: Present climate simulation over Korea with a regional climate model using a one-way nested system. Theor. Appl. Climatol., 86, 187–200.

    Article  Google Scholar 

  • Im, E. S., W. T. Kwon, J. B. Ahn, and F. Giorgi, 2007: Multi-decadal scenario simulation over Korea using a one-way doublenested regional climate model system. I. Recent climate simulation (1971-2000). Clim. Dynam., 28, 759–780.

    Article  Google Scholar 

  • Im, E. S., W. J. Gutowski, and F. Giorgi, 2008: Consistent changes in twenty-first century daily precipitation from regional climate simulations for Korea using two convection parameterizations. Geophys. Res. Lett., 35, L14706.

    Article  Google Scholar 

  • Im, E. S., I. W. Jung, and D. H. Bae, 2011: The temporal and spatial structure of recent and future trends in extreme indices over Korea from a regional climate projection. Int. J. Climatol., 31, 72–86.

    Article  Google Scholar 

  • Im, E. S., B. J. Lee, J. H. Kwon, S. R. In, and H. O. Han, 2012: Potential increase of flood hazards in Korea due to global warming from a highresolution regional climate simulation. Asia-Pac. J. Atmos. Sci., 48, 107–113.

    Article  Google Scholar 

  • Im, E. S., J. B. Ahn, and S. R. Jo, 2015: Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios. Clim. Res., 63, 249–266.

    Article  Google Scholar 

  • Jankov, I., W. Gallus, M. Segal, B. Shaw, and S. Koch, 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecast, 20, 1048–1060.

    Article  Google Scholar 

  • Jeong, H. I., D. Y. Lee, K. Ashok, J. B. Ahn, J. Y. Lee, J. J. Luo, J. K. Schemm, H. H. Hendon, K. Braganza, and Y. G. Ham, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim. Dynam., 39, 475–493.

    Article  Google Scholar 

  • Kirtman, B., and Coauthors, 2013: Near-term Climate Change: Projections and Predictability. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al. Eds., Cambridge University Press, 953–1028.

    Google Scholar 

  • Kryjov, V. N., 2012: Seasonal climate prediction for North Eurasia. Environ. Res. Lett., 7, 015203, doi:10.1088/1748-9326/7/1/015203.

    Article  Google Scholar 

  • Kug, J. S., L. Y. Lee, and I. S. Kang, 2008: Systematic error correction of dynamical seasonal prediction of sea surface temperature using a stepwise pattern project method. Mon. Wea. Rev., 136, 3501–3512.

    Article  Google Scholar 

  • Leduc, M., and R. Laprise, 2008: Regional climate model sensitivity to domain size. Clim. Dynam., 32, 833–854.

    Article  Google Scholar 

  • Lee, D. K., H. R. Kim, and S. Y. Hong, 1998: Heavy rainfall over Korea during 1980-1990. Korean J. Atmos. Sci., 1, 32–50.

    Google Scholar 

  • Lee, D. Y., J. B. Ahn, K. Ashok, and A. Alessandri, 2013a: Improvement of grand multi-model ensemble prediction skills for the coupled models of APCC/ENSEMBLES using a climate filter. Atmos. Sci. Lett., 14, 139–145.

    Article  Google Scholar 

  • Lee, D. Y., J. B. Ahn, and K. Ashok, 2013b: Improvement of multi-model ensemble seasonal prediction skills over East Asian summer monsoon region using a climate filter concept. J. Appl. Meteorol., 52, 1127–1138.

    Article  Google Scholar 

  • Lee, J. W., and S. Y. Hong, 2014: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climtol., 117, 667–677.

    Article  Google Scholar 

  • Lee, J. W., S. Y. Hong, E. C. Chang, M. S. Suh, and H. S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dynam., 42, 733–747.

    Article  Google Scholar 

  • Martin, G. M., and R. C. Levine, 2012: The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst. Dynam., 3, 245–261.

    Article  Google Scholar 

  • Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res., 119, 1695–1707.

    Google Scholar 

  • Meinshausen, M., and Coauthors, 2011: The RCP Greenhouse Gas Concentrations and their Extension from 1765 to 2300. Climatic Change, 109, 213–241.

    Article  Google Scholar 

  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  Google Scholar 

  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. U.S.A., 106, 14773–14777.

    Article  Google Scholar 

  • Oh, S. K., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913–2927.

    Article  Google Scholar 

  • Peng, P., A. Kumar, H. van den Dool, and A. G. Barnston, 2002: An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res., 107, 4710, doi:10.1029/2002JD002712.

    Google Scholar 

  • Seo, Y. A., Y. Lee, J. S. Park, M. K. Kim, C. Cho, and H. J. Baek, 2015: Assessing changes in observed and future projected precipitation extremes in South Korea. Int. J. Climatol., 35, 1069–1078.

    Article  Google Scholar 

  • Separovic, L., R. Elía, and R. Laprise, 2012: Impact of spectral nudging and domain size in studies of RCM response to parameter modification. Clim. Dynam., 38, 1325–1343.

    Article  Google Scholar 

  • Shindell, D. T., A. Voulgarakis, G. Faluvegi, and G. Milly, 2012: Precipitation response to regional radiative forcing. Atmos. Chem. Phys., 12, 6969–6982.

    Article  Google Scholar 

  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 2473–2493.

    Google Scholar 

  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 4801–4818.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc., 93, 485–498.

    Article  Google Scholar 

  • Teutschbein, C., and J. Seibert, 2012a: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456, 12–29.

    Article  Google Scholar 

  • Teutschbein, C., and J. Seibert, 2012b: Is bias correction of Regional Climate Model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci. Discuss., 9, 12765–12795.

    Article  Google Scholar 

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

    Google Scholar 

  • Xu, Y., C. H. Xu, X. J. Gao, and Y. Luo, 2009: Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quat. Int., 208, 44–52.

    Article  Google Scholar 

  • Yu, E., J. Sun, H. Chen, and W. Xiang, 2015: Evaluation of a high-resolution historical simulation over China: climatology and extremes. Clim. Dynam., 45, 2013–2031.

    Article  Google Scholar 

  • Zwiers, F. W., X. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881–892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sera Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, JB., Jo, S., Suh, MS. et al. Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific J Atmos Sci 52, 223–236 (2016). https://doi.org/10.1007/s13143-016-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0021-0

Key words

Navigation