Skip to main content

Advertisement

Log in

A Comparison of the Accuracy of Different Single Plasma Sample Methods for Measuring Glomerular Filtration Rate Using 51Cr-EDTA in Children

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Among the different methods of measuring glomerular filtration rate (GFR) using 51Cr-ethylenediaminetetraacetic acid clearance, the two-plasma-sample method (TPSM) is widely used, and highly accurate. The single-plasma-sample method (SPSM) is occasionally used for simplicity, at the expense of accuracy. Our aims were (1) to investigate the correlation and (2) to compare the accuracy of six known SPSMs in pediatric patients in reference to TPSM.

Methods

We retrospectively reviewed 122 pediatric cases (65 boys, age 7.3 ± 4.6 years) and analyzed 307 GFR measurements. SPSMs included Groth and Aasted at 120 min, Ham at 120 min, Christensen and Groth at 120 and 240 min, and Jacobsson at 120 and 240 min. Reference GFR (GFRref) was defined using TPSM GFR corrected by the Jodal and Brochner-Mortensen equation. GFRref < 30 mL min−1 1.73 m−2 were excluded. The standard error of the estimate (SEE) and the number of cases with differences > 10% (N10%) were used to evaluate accuracy.

Results

SPSMs generally correlated well with GFRref (r = 0.92~0.99) and were relatively accurate (SEE = 9.21~15.60). Groth and Aasted showed the smallest SEE, while Jacobsson at 240 min showed the smallest N10% for all GFRref ranges. As for the decreased GFRref, Ham was most accurate followed by Jacobsson at 240 min.

Conclusions

Jacobsson at 240 min provided good accuracy in all GFRref ranges and was well correlated with TPSM. Jacobsson at 240 min might be the most appropriate method to substitute for TPSM in pediatric patients. Ham could be an alternative in patients with impaired renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int Suppl. 1997;63:S151–4.

    PubMed  CAS  Google Scholar 

  3. Hartlev LB, Boeje CR, Bluhme H, Palshof T, Rehling M. Monitoring renal function during chemotherapy. Eur J Nucl Med Mol Imaging. 2012;39:1478–82.

    Article  PubMed  CAS  Google Scholar 

  4. Roos JF, Doust J, Tett SE, Kirkpatrick CM. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis. Clin Biochem. 2007;40:383–91.

    Article  PubMed  CAS  Google Scholar 

  5. Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25:759–69.

    Article  PubMed  Google Scholar 

  6. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the radionuclides in Nephrourology Committee on Renal Clearance. J Nucl Med. 1996;37:1883–90.

    PubMed  CAS  Google Scholar 

  7. Grant FD, Fahey FH, Treves ST. Radionuclide determination of glomerular filtration rate. In: Treves ST, editor. Pediatric nuclear medicine and molecular imaging. 4th ed. New York: Springer; 2014. p. 355–64.

    Chapter  Google Scholar 

  8. Murray AW, Barnfield MC, Waller ML, Telford T, Peters AM. Assessment of glomerular filtration rate measurement with plasma sampling: a technical review. J Nucl Med Technol. 2013;41:67–75.

    Article  PubMed  Google Scholar 

  9. Brochner-Mortensen J, Haahr J, Christoffersen J. A simple method for accurate assessment of the glomerular filtration rate in children. Scand J Clin Lab Invest. 1974;33:140–3.

    Article  PubMed  CAS  Google Scholar 

  10. Ham HR, Piepsz A. Estimation of glomerular filtration rate in infants and in children using a single-plasma sample method. J Nucl Med. 1991;32:1294–7.

    PubMed  CAS  Google Scholar 

  11. Picciotto G, Cacace G, Cesana P, Mosso R, Ropolo R, De Filippi PG. Estimation of chromium-51 ethylene diamine tetra-acetic acid plasma clearance: a comparative assessment of simplified techniques. Eur J Nucl Med. 1992;19:30–5.

    Article  PubMed  CAS  Google Scholar 

  12. Henriksen UL, Kanstrup IL, Henriksen JH. One-sample determination of glomerular filtration rate (GFR) in children. An evaluation based on 75 consecutive patients. Scand J Clin Lab Invest. 2013;73:466–75.

    Article  PubMed  CAS  Google Scholar 

  13. Itoh K, Tsushima S, Tsukamoto E, Tamaki N. Accuracy of plasma sample methods for determination of glomerular filtration rate with 99mTc-DTPA. Ann Nucl Med. 2002;16:39–44.

    Article  PubMed  Google Scholar 

  14. Waller DG, Keast CM, Fleming JS, Ackery DM. Measurement of glomerular filtration rate with technetium-99m DTPA: comparison of plasma clearance techniques. J Nucl Med. 1987;28:372–7.

    PubMed  CAS  Google Scholar 

  15. Fisher M, Veall N. Glomerular filtration rate estimation based on a single blood sample. Br Med J. 1975;2:542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Fleming JS, Wilkinson J, Oliver RM, Ackery DM, Blake GM, Waller DG. Comparison of radionuclide estimation of glomerular filtration rate using technetium 99m diethylenetriaminepentaacetic acid and chromium 51 ethylenediaminetetraacetic acid. Eur J Nucl Med. 1991;18:391–5.

    Article  PubMed  CAS  Google Scholar 

  17. Biggi A, Viglietti A, Farinelli MC, Bonada C, Camuzzini G. Estimation of glomerular filtration rate using chromium-51 ethylene diamine tetra-acetic acid and technetium-99m diethylene triamine penta-acetic acid. Eur J Nucl Med. 1995;22:532–6.

    Article  PubMed  CAS  Google Scholar 

  18. Brochner-Mortensen J. Current status on assessment and measurement of glomerular filtration rate. Clin Physiol. 1985;5:1–17.

    Article  PubMed  CAS  Google Scholar 

  19. Brauner L, Westling H. On the necessity of strict bed rest during determination of 51Cr-EDTA clearance. Clin Physiol. 1981;1:175–80.

    Article  Google Scholar 

  20. Groth S, Aasted M. 51Cr-EDTA clearance determined by one plasma sample in children. Clin Physiol. 1984;4:75–83.

    Article  PubMed  CAS  Google Scholar 

  21. Christensen AB, Groth S. Determination of 99mTc-DTPA clearance by a single plasma sample method. Clin Physiol. 1986;6:579–88.

    Article  PubMed  CAS  Google Scholar 

  22. Jacobsson L. A method for the calculation of renal clearance based on a single plasma sample. Clin Physiol. 1983;3:297–305.

    Article  PubMed  CAS  Google Scholar 

  23. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

    Article  PubMed  CAS  Google Scholar 

  24. Giavarina D. Understanding bland Altman analysis. Biochem Med (Zagreb). 2015;25:141–51.

    Article  Google Scholar 

  25. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  PubMed  CAS  Google Scholar 

  26. Jodal L, Brochner-Mortensen J. Reassessment of a classical single injection 51Cr-EDTA clearance method for determination of renal function in children and adults. Part I: analytically correct relationship between total and one-pool clearance. Scand J Clin Lab Invest. 2009;69:305–13.

    Article  PubMed  CAS  Google Scholar 

  27. Brenton AG, Godfrey AR. Accurate mass measurement: terminology and treatment of data. J Am Soc Mass Spectrom. 2010;21:1821–35.

    PubMed  CAS  Google Scholar 

  28. Walther BA, Moore JL. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography. 2005;28:815–29.

    Article  Google Scholar 

  29. Blake GM, Barnfield MC, Burniston MT, Fleming JS, Cosgriff PS, Siddique M. Correction of the slope-intercept method for the measurement of glomerular filtration rate. Nucl Med Commun. 2014;35:1277–83.

    Article  PubMed  Google Scholar 

  30. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  31. Itoh K, Matsuyama T. The single-plasma-sample method for determining the glomerular filtration rate with Tc-99m-diethylenetriamine pentaacetic acid in childhood and adolescence: is it age-dependent? Ann Nucl Med. 2002;16:541–8.

    Article  PubMed  Google Scholar 

  32. Ham HR, Piepsz A. Feasibility of estimating glomerular filtration rate in children using single-sample adult technique. J Nucl Med. 1996;37:1805–8.

    PubMed  CAS  Google Scholar 

  33. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, et al. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28:Bp31–6.

    PubMed  CAS  Google Scholar 

  34. Fleming JS. An improved equation for correcting slope-intercept measurements of glomerular filtration rate for the single exponential approximation. Nucl Med Commun. 2007;28:315–20.

    Article  PubMed  Google Scholar 

  35. Watson WS. A simple method of estimating glomerular filtration rate. Eur J Nucl Med. 1992;19:827.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Sejin Ha and Jong Jin Lee received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Jin Lee.

Ethics declarations

Conflicts of Interest

Sejin Ha and Jong Jin Lee declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

This study was approved by our Institutional Review Board (IRB No. 2017-1843). The Institutional Review Board waived informed consent.

Appendices

Appendix 1: Slope-Intercept GFR Corrected Using the Jodal and Bochner-Mortensen Equation (Reference GFR) [26]

$$ {\displaystyle \begin{array}{c}\mathrm{Reference}\ \mathrm{GFR}\ \left(\mathrm{mL}\ {\min}^{-1}\ 1.73\ {\mathrm{m}}^{-2}\right)=\mathrm{SI}-{\mathrm{GFR}}_{\mathrm{cor}}/\left(1+0.00185\times {\mathrm{BSA}}^{-0.3}\times \mathrm{SI}-{\mathrm{GFR}}_{\mathrm{cor}}\right),\mathrm{SI}-{\mathrm{GFR}}_{\mathrm{cor}}\ \left(\mathrm{mL}\ {\min}^{-1}\ 1.73\ {\mathrm{m}}^{-2}\right)=\mathrm{SI}-\mathrm{GFR}\times \left(1.73\ \mathrm{BSA}\ {\mathrm{m}}^{-2}\right)\\ {}\kern0ex \mathrm{SI}-\mathrm{GFR}\ \left(\mathrm{mL}\ {\min}^{-1}\right)=\left({w}_{\mathrm{i}}\times \mathrm{s}\times 200/{w}_{\mathrm{s}}\right)\times \left(\ln \left({C}_1/{C}_2\right)/\mathrm{d}t\right)\times \left({C_2}^{\left(t1/\mathrm{d}t\right)}/{{\mathrm{C}}_1}^{\left(t2/\mathrm{d}t\right)}\right)\end{array}} $$

where wi is injection mass (g), ws is standard mass (g), t1 is 1st plasma sample time (min), t2 is 2nd plasma sample time (min), dt = t2 – t1 (min), s is standard count (cpm mL−1), C1 is 1st plasma sample count (cpm mL−1), C2 is 2nd plasma sample count (cpm mL−1), and BSA is body surface area (m2).

Appendix 2: Groth and Aasted’s Method [20]

$$ \mathrm{Cl}\ \left(\mathrm{mL}\ {\min}^{-1}\ 1.73\ {\mathrm{m}}^{-2}\right)=A+\mathrm{BX},A=-553.124\ \ln (t)+3236.76,B=72.295\ \ln (t)-425.41,X=\ln \left\{C(t)\times \mathrm{BSA}\times {10}^7/\mathrm{ID}\right\} $$

where t is sample time (90~120 min), C(t) is sample activity at time = t (min) (cpm mL-1), ID is injected dose (cpm).

Reference method of plasma clearance: two-exponential curve fitting five samples at 5, 15, 60, 90, and 120 min after the injection of 51Cr-EDTA.

Appendix 3: Ham’s Method [6, 10]

$$ \mathrm{Cl}\ \left(\mathrm{mL}\ {\min}^{-1}\right)=2.602{V}_{120}-0.273,{V}_{120}\ \left(\mathrm{L}\right)=\mathrm{ID}/{C}_{120},{C}_{120}=A(t)\times {\mathrm{e}}^{(0.008)\left(t-120\right)} $$

where t is sample time (100~130 min), A(t) is actual radioactivity at sample time = t (cpm mL-1), C120 is radioactivity corresponding to sample time = t (cpm mL-1), and V120 is volume of distribution at sample time = t (L).

Reference method of plasma clearance: one-exponential curve fitting two samples between 2 and 4 h after the injection of 51Cr-EDTA with composite correction constant of 0.85

Appendix 4: Christensen and Groth’s Method [6, 21, 35]

$$ \mathrm{Cl}\ \left(\mathrm{mL}\ {\min}^{-1}\right)=\left(-b+\sqrt{\left({b}^2-4 ac\right)}\right)/2\mathrm{a},a=0.0000017{t}^2-0.0012t,b=-0.000775{t}^2+1.31t,c=\mathrm{ECV}\times \ln \left(\mathrm{ECV}/V(t)\right) $$

where ECV is extracellular volume = 8116.6 BSA − 28.2 (mL), V(t) is volume of distribution = ID/C(t) (mL), t is sample time (180~300 min), BSA is body surface area (m2), and ID is injected dose (cpm).

Reference method of plasma clearance: two-exponential curve fitting 16 samples from 0 to 300 min after the injection of 99mTc-DTPA.

Appendix 5: Jacobsson’s Method [22]

$$ \mathrm{Cl}\ \left(\mathrm{mL}\ {\min}^{-1}\right)=\ln \left(V(t)/{V}^{\prime}\right)/\left(t/{V}^{\prime }+0.0016\right) $$

where V(t) is volume of distribution at sample time = t (mL), ID is injected dose (cpm), C(t) is plasma radioactivity at sample time = t (cpm mL-1), V′ = 0.246 BW, BW is body weight (g), t is sample time (min).

Reference method of plasma clearance: one-exponential curve fitting four samples from 240 to 300 min after the injection of 99mTc-DTPA with Brochner-Mortensen’s correction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, S., Lee, J.J. A Comparison of the Accuracy of Different Single Plasma Sample Methods for Measuring Glomerular Filtration Rate Using 51Cr-EDTA in Children. Nucl Med Mol Imaging 52, 293–302 (2018). https://doi.org/10.1007/s13139-018-0529-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-018-0529-6

Keywords

Navigation