Skip to main content
Log in

Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge

  • Article
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

In 2008–2009, hydrothermal barnacle and sediment samples were collected from the Southwest Indian Ridge during a survey of the China Ocean Mineral Resources R&D Association (COMRA). Samples were analyzed by gas chromatography-mass spectrometer (GC-MS), revealing the main organic constituents of hydrothermal barnacle and sediment to be fatty acids and alkylbenzenes. N-alkanes which possessed obvious even carbon advantage were also detected in hydrothermal sediment. The high concentrations of aromatic compounds might be the result of macromolecular thermal alteration. Microorganism in the submarine hydrothermal ecosystem, especially those related to sulfur metabolism, might be the source of the high concentrations of fatty acids detected in these samples. In high temperature and high pressure hydrothermal environments, n-alkanes which possessed obvious even carbon advantage might originate from thermal alteration of carboxylic acids and other lipid compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassez M P, Takano Y, Ohkouchi N. 2009. Organic analysis of peridotite rocks from the Ashadze and Logatchev hydrothermal sites. Int J Mol Sci, 10: 2986–2998

    Article  Google Scholar 

  • Bouloubassi I, Aloisi G, Pancost R D, et al. 2006. Archaeal and bacterial lipids in authigenic carbonate crusts fromeastern Mediterranean mud volcanoes. Organic Geochemistry, 37: 484–500

    Article  Google Scholar 

  • Brault M, Simoneit B R T. 1988. Mild hydrothermal alteration of immature organic-matter in sediments from the Bransfield Strait, Antarctica. Applied Geochemistry, 5: 149–158

    Article  Google Scholar 

  • Charlou J L, Donval J P, Fouquet Y, et al. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology, 191: 345–359

    Article  Google Scholar 

  • Charlou J L, Donval J P, Konn C, et al. 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Diversity of Hydrothermal Systems on Slow-spreading Ocean Ridges (eds Rona P, Devey C, Dyment J, Murton B). Geophysical monograph series 188. Washington D C: American Geophysical Union, 265–296

    Chapter  Google Scholar 

  • Chernova T G, Rao P S, Pikovskii Yu I, et al. 2001. The composition and source of hydrocarbons in sediments taken from the tectonically active Andaman Backarch Basin, Indian Ocean. Mar Chem, 75: 1–15

    Article  Google Scholar 

  • Colaco A, Prieto C, Martins A, et al. 2009. Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen vent field. Marine Environmental Research, 67: 146–152

    Article  Google Scholar 

  • Dover V, Humphris S E, Fornari D, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294: 818–823

    Article  Google Scholar 

  • Elias V O, Simoneit B R T, Cardoso J N. 1997. Even n-alkane predominances on the Amazon shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften, 84: 415–420

    Article  Google Scholar 

  • Eremenko N A, Chilingar G. 1996. Geokhimiya nefti i gazana rubezhe vekov (Petroleum Geochemistry at the Threshold of Centuries) (in Russian). Moscow: Nauka

    Google Scholar 

  • Farrington J W, Quinn J G, Davis W R. 1973. Fatty acid composition of Nephtys incisa and Yoldia eimatula. Journal of the Fisheries Research Board of Canada, 30: 181–185

    Article  Google Scholar 

  • Fouad B M, Jean C M, Aline F M. 1992. Fatty acid composition in deep hydrothermal vent symbiotic bivalves. Journal of Lipid Research, 33: 1797–1806

    Google Scholar 

  • Fujimoto H, Mevel C, fujioka K et al. 1999. First submersible investigations of mid-ocean ridges in the Indian Ocean. Inter Ridge News, 8: 22–24

    Google Scholar 

  • Gallant R M, Damm V K L. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23–25°S, Central Indian Ridge. Geochem Geophys Geosys, 7: Q06018

    Article  Google Scholar 

  • Gennadiev A N, Pikovsky Y I. 1996. Geochemistry of polycyclic aromatic hydrocarbons in rocks and soils (in Russian). Moscow: Moscow University Publishers, 192

    Google Scholar 

  • Geptner A R, ricter B, Pikovskii Y I, et al. 2006. Polycyclic aromatic hydrocarbons as evidence of hydrocarbon migration in marine and lagoon sediments of a recent rift zone (Skjálfandi and Öxarfjður), Iceland. Chemie der Erde, 66: 213–225

    Article  Google Scholar 

  • Gontharet S, Stadnitskaia A, Bouloubassi I, et al. 2009. Palaeomethaneseepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea). Marine Geology, 261: 105–113

    Article  Google Scholar 

  • Guerreiro V, Narciso L, Almeida A J, et al. 2004. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (Mid-Atlantic Ridge). Cybium, 28(1): 33–44

    Google Scholar 

  • Guezennec J, Fiala-Medioni A. 1996. Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis. FEMS Microbiol Ecol, 19: 83–93

    Article  Google Scholar 

  • Hunt J. 1996. Petroleum Geochemistry and Geology. New York: Freeman and Co, 743

    Google Scholar 

  • Joseph J D. 1982. Lipid composition of marine and estuarine invertebrates: Part II. Mollusca. Progress in Lipid Research, 21: 109–153

    Article  Google Scholar 

  • Jungblut A D, Allen M A, Burns B P, et al. 2009. Lipid biomarker analysis of cyanobacteria-dominated microbial mats in melt water ponds on the McMurdo Ice Shelf, Antarctica. Organic Geochemistry, 40: 258–269

    Article  Google Scholar 

  • Konn C, Charlou J L, Donval J P, et al. 2012. Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction-gas chromatography-mass spectrometry. Case study: the Rainbow field (36°N, Mid-Atlantic Ridge). Geochemical Transactions, 13: 8

    Article  Google Scholar 

  • Konn C, Charlou J L, Donval J P, et al. 2009. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 258: 299–314

    Article  Google Scholar 

  • Konn C, Testemale D, Querellou J, et al. 2011. New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids. Geobiology, 9: 79–93

    Article  Google Scholar 

  • Konneke M, Widdel F. 2003. Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol, 5: 1063–1070

    Article  Google Scholar 

  • Kumagai H, Nakamura K, Morishita T, et al. 2008. Geological background of the Kairei and Edmound hydrothermal vent fields along the Central Indian Ridge: Insights into the distinct chemistry between theia vent fluids. Geofluids, 8: 239–251

    Article  Google Scholar 

  • Lein A Y, Peresypkin V I, Simoneit B R T. 2003. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge. Lithology and Mineral Resources, 38(5): 383–393

    Article  Google Scholar 

  • Li Jiwei, Zhou Huaiyang, Peng Xiaotong, et al. 2011. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney. Journal of Sea Research, 65: 333–339

    Article  Google Scholar 

  • Li Yiliang, Peacock A D, White D C, et al. 2007. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. Chem Geol, 238: 168–179

    Article  Google Scholar 

  • Macleod G, McKeown C, Hall A J, et al. 1994. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Origins of Life and Evolution of Biospheres, 24: 19–41

    Article  Google Scholar 

  • Madigan M, Martinko J. 2005. Brock Biology of Microorganisms. 11th ed. London: Prentice Hall

    Google Scholar 

  • McCaffrey M A, Farrington J W, Repeta D J. 1989. Geochemical implications of the lipid composition of Thioploca spp. from the Peru upwelling regions 15°S. Org Geochem, 14: 61–68

    Article  Google Scholar 

  • McCollom T M, Seewald J S. 2007. Abiotic synthesis of organic compounds in deep-Sea Hydrothermal environments. Chem Rev, 107: 382–401

    Article  Google Scholar 

  • McCollom T M, Seewald J S, Simoneit B R T. 2001. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochimica et Cosmochimica Acta, 65(3): 455–468

    Article  Google Scholar 

  • McCollom T, Shock E L. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta, 61: 4375–4391

    Article  Google Scholar 

  • Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geologe, 27(10): 867

    Article  Google Scholar 

  • Munch U, Claude L, Peter H, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3–4): 341–349

    Article  Google Scholar 

  • Peng Xiaotong, Li Jiwei, Zhou Huaiyang, et al. 2011. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. Journal of Asian Earth Sciences, 41: 355–368

    Article  Google Scholar 

  • Pond D W, Allen C E, Bell M V, et al. 2002. Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgea piscesae and Protis hydrothermica. Marine Ecology Progress Series, 225: 219–226

    Article  Google Scholar 

  • Pond D W, Dixon D R, Bell M V, et al. 1997. Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimps Rimicaris exoculata and Alvinocaris markensis: nutritional and trophic implications. Marine Ecology Progress Series, 156: 167–174

    Article  Google Scholar 

  • Pond D W, Fallick A E, Stevens C J, et al. 2008. Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence. Deep-Sea Research I, 55: 1718–1726

    Article  Google Scholar 

  • Pond D W, Gebruk A, Southward E C, et al. 2000. Unusual fatty acid composition of storage lipids in the bresilioid shrimp Rimicaris exoculata couples the photic zone with MAR hydrothermal vent sites. Marine Ecology Progress Series, 198: 171–173

    Article  Google Scholar 

  • Pranal V, Medioni A F, Guezennec J. 1996. Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific. Marine Ecology Progress Series, 142: 175–184

    Article  Google Scholar 

  • Pranal V, Medioni A F, Guezennec J. 1997. Fatty acid characteristics in two symbiont-bearing mussels from deep-sea hydrothermal vents of the south-western Pacific. Mar Boil Ass U K, 77: 473–492

    Article  Google Scholar 

  • Saito H, Hashimoto J. 2010. Characteristics of the fatty acid composition of a deep-sea vent gastropod, ifremeria nautilei. Lipids, 45: 537–548

    Article  Google Scholar 

  • Saito H. 2011. Characteristics of Fatty Acid Composition of the Deep-Sea Vent Crab, Shinkaia crosnieri Baba and Williams. Lipids, 46: 723–740

    Article  Google Scholar 

  • Sargent J R, Bell M V, Bell J G, et al. 1995. Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In: Ceve G, Paltauf F, eds. Phospholipids Characterisation. Metabolism and Novel Biological Applications. Champaign IL: American Oil Society Press, 248–259

    Google Scholar 

  • Sargent J R. 1976. The structure, function, and metabolism of lipids in marine organisms. In: Malins D C, Sargent J R, eds. Biochemical and Biophysical Perspectives in Marine Biology, 3. New York: Academic Press, 149–212

    Google Scholar 

  • Schoell. 1983. Genetic characterisation of natural gases. AAPG Bull, 67: 2225–2238

    Google Scholar 

  • Shock E L. 1990. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of Life and Evolution of Biospheres, 20: 331–367

    Article  Google Scholar 

  • Shulga N A, Peresypkin V I. 2012. New data on the composition of organic matter in the hydrothermal deposits of the Mid-Atlantic Ridge (Broken Spur, Snake Pit, TAG). Doklady Earth Sciences, 444(2): 773–775

    Article  Google Scholar 

  • Shulga N A, Peresypkin V I, Revelskii I A. 2010. Composition research of n-alkanes in the samples of hydrothermal deposits of the Mid-Atlantic Ridge by means of gas chromatography-mass spectrometry. Oceanology, 50(4): 479–487

    Article  Google Scholar 

  • Simoneit B R T, Brault M, Saliot A. 1992a. Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge. Appl Geochem, 5: 115–124

    Article  Google Scholar 

  • Simoneit B R T, Kawka O E, Wang G M. 1992b. Biomarker maturation in contemporary hydrothermal system alteration of immature organic matter in zero geological time. In: Moldowan J M, Albrecht P, Philp R P, eds. Biological markers in sediments and petroleum: a tribute to Wolfgang K Seifert. Dallas, TX: Pentice Hall, Engle wood Cliffs, 124–141

    Google Scholar 

  • Simoneit B R T, Lein A Y, Peresypkin V I, et al. 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N). Geochimica et Cosmochimica Acta, 68:10: 2275–2294

    Article  Google Scholar 

  • Simoneit B R T, Sparow M A. 2002. Dissolved organic carbon in interstitial waters from sediments of Middle Valley and Escanaba Trough, Northeast Pacific, ODP Legs 139 and 169. Applied Geochemistry, 17: 1495–1502

    Article  Google Scholar 

  • Simoneit B R T. 1985. Hydrothermal petroleum: genesis, migration and deposition in Guaymas Basin, Gulf of California. Can J Earth Sci, 22: 1919–1929

    Article  Google Scholar 

  • Southward, Alan J. 1998. New observations on barnacles (Crustacea: Cirripedia) of the Azores region. Arquipelago Boletim da Universidade dos Acores Ciencias Biologicas e Marinhas, 16A: 11–27

    Google Scholar 

  • Takai T, Gamo U, Tsunogai et al. 2004. Geochemistry and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface litho-autotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles, 8: 269–282

    Article  Google Scholar 

  • Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence, 2nd ed. New York: Springer, 699

    Book  Google Scholar 

  • Toshiro Y, Susumu S. 2004. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Organic Geochemistry, 35: 573–582

    Article  Google Scholar 

  • Venkatesan M I, Ruth E, Rao P S, et al. 2003. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Applied Geochemistry, 18: 845–861

    Article  Google Scholar 

  • Zeng Zhigang. 2011. Submarine Hydrothermal Geology (in Chinese). Beijing: Science Press, 140–144

    Google Scholar 

  • Zhang Chuanlun, Huang Zhiyong, Cantu J, et al. 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol, 71: 2106–2112

    Article  Google Scholar 

  • Zhang Qiling, Hou Zengqian, Tang Shaohua. 2001. Organic composition of sulphideores in the Okinawa Trough and its implications. Acta Geologia Sinica, 75(2): 196–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Additional information

Foundation item: The National Key Basic Research Program of China under contract No. 2013CB429700; National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-11-R-05; Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No. JQ200913; the National Natural Science Foundation of China under contract Nos 40830849, 40976027 and 40906029.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Zeng, Z., Chen, S. et al. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge. Acta Oceanol. Sin. 32, 60–67 (2013). https://doi.org/10.1007/s13131-013-0388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-013-0388-z

Key words

Navigation