Skip to main content
Log in

Characteristics of the Fatty Acid Composition of a Deep-Sea Vent Gastropod, Ifremeria nautilei

  • Original Article
  • Published:
Lipids

Abstract

Neutral and polar lipids in the soft parts of a gastropod species, Ifremeria nautilei, collected from deep-sea hydrothermal vents, were examined to assess the trophic relationships in hydrothermal vents. The vent gastropod obtains many of its lipids from symbiotic chemosynthetic microorganisms. The major polyunsaturated fatty acids (PUFA) both in the triacylglycerols and phospholipids of the gastropod consist of a limited number of n-3 and n-6 PUFA: arachidonic acid (20:4n-6), icosapentaenoic acid (20:5n-3), and docosapentaenoic acid (22:5n-3), without docosahexaenoic acid (DHA, 22:6n-3). Noticeable levels of various n-6 PUFA, such as 18:2n-6,9, 20:2n-6,9, 20:3n-6,9,12, and 20:3n-6,9,15 with significant levels of 16:1n-6 and 18:1n-6 indicate the biosynthetic characteristic of the endosymbionts. The lack of DHA in all specimens suggests a limitation of its lipid biosynthesis ability with its symbionts. This finding with regard to the lipids is unusual for a marine animal in the grazing or detrital food chain because many marine animal lipids evidently contain high levels of DHA with low levels of n-6 fatty acids. Such contradictory findings lead to some new insights into the absence of a biosynthetic pathway for DHA in I. nautilei, and provide evidence that DHA in this species is dispensable. Similar to herbivorous gastropods, the lack of DHA with significant levels of n-6 PUFA in this species also indicates its selective assimilation of specific microorganisms, such as chemosynthetic bacteria in hydrothermal vents, because significant levels of DHA were found in carnivorous mollusk lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARA:

Arachidonic acid

DMA:

Dimethylacetals

DMOX:

4,4-Dimethyloxazoline

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EPA (IPA):

Icosapentaenoic acid

GC–MS:

Gas chromatography–mass spectroscopy

MUFA:

Monounsaturated fatty acids

NMID:

Non-methylene interrupted dienes

NMR:

Nuclear magnetic resonance

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PUFA:

Polyunsaturated fatty acids

TAG:

Triacylglycerols

TFA:

Total fatty acids

References

  1. Ackman RG (1989) Fatty Acids. In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol I. CRC Press, Boca Raton, pp 103–137

    Google Scholar 

  2. Joseph JD (1989) Distribution and composition of lipids in marine invertebrates. In: Ackman RG (ed) Marine Biogenic Lipids, Fats and Oils, vol II. CRC Press, Boca Raton, pp 49–143

    Google Scholar 

  3. Morris RJ, Culkin F (1989) Fish. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils, vol II. CRC Press, Boca Raton, pp 145–178

    Google Scholar 

  4. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    CAS  PubMed  Google Scholar 

  5. Yano Y, Nakayama A, Saito H, Ishihara K (1994) Production of docosahexaenoic acid by marine bacteria isolated from deep-sea fish. Lipids 29:527–528

    Article  CAS  PubMed  Google Scholar 

  6. Saito H, Yamashiro R, Ishihara K, Xue C (1999) The lipids of three highly migratory fishes: Euthynnus affinis, Sarda orientalis, and Elagatis bipinnulata. Biosci Biotech Biochem 63:2028–2030

    Article  CAS  Google Scholar 

  7. Saito H, Seike Y, Ioka H, Osako K, Tanaka M, Takashima A, Keriko JM, Kose S, Souza JCR (2005) High docosahexaenoic acid levels in both neutral and polar lipids of a highly migratory fish: Thunnus tonggol Bleeker. Lipids 40:941–953

    Article  CAS  PubMed  Google Scholar 

  8. Koizumi C, Jeong BY, Ohshima T (1990) Fatty chain composition of ether and ester glycerophospholipids in the Japanese oyster Crassostrea gigas (Thunberg). Lipids 25:363–370

    Article  CAS  Google Scholar 

  9. Thompson PA, Harrison PJ (1992) Effects of monospecific algal diets of varying biochemical composition on the growth and survival of Pacific oyster (Crassostrea gigas) larvae. Mar Biol 113:645–654

    Article  CAS  Google Scholar 

  10. Dunstan GA, Volkman JK, Barrett SM (1993) The effect of lyophilization on the solvent extraction of lipid classes, fatty acids and sterols from the oyster Crassostrea gigas. Lipids 28:937–944

    Article  CAS  Google Scholar 

  11. Soudant P, Ryckeghem KV, Marty Y, Moal J, Samain JF, Sorgeloos P (1999) Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific oyster Crassostrea gigas. Comp Biochem Physiol 123B:209–222

    CAS  Google Scholar 

  12. Saito H (2004) Lipid and FA composition of the pearl oyster Pinctada fucata martensii: influence of season and maturation. Lipids 39:997–1005

    Article  CAS  PubMed  Google Scholar 

  13. Napolitano GE, MacDonald BA, Thompson RJ, Ackman RG (1992) Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats. Mar Biol 113:71–76

    Article  CAS  Google Scholar 

  14. Pazos AJ, Sánchez JL, Román G, Pérez-Parallé ML, Abad M (2003) Lipid class fatty acid composition in the female gonad of Pecten maxima in relation to reproductive cycle and environmental variables. Comp Biochem Physiol 134B:367–380

    CAS  Google Scholar 

  15. Kraffe E, Soudant P, Marty Y, Kervarec N (2005) Docosahexaenoic acid- and eicosapentaenoic acid-enriched cardiolipin in the Manila clam Ruditapes philippinarum. Lipids 40:619–625

    Article  CAS  PubMed  Google Scholar 

  16. Kluytmans JH, Boot JH, Oudejand RCHM, Zandee DI (1985) Fatty acid synthesis in relation to gametogenesis in the mussel Mytilus edulis L. Comp Biochem Physiol 81B:959–963

    CAS  Google Scholar 

  17. Freites L, Fernandez-Reiriz MJ, Labarta U (2002) Fatty acid profiles of Mytilus galloprovincialis (Lmk) mussel of subtidal and rocky shore origin. Comp Biochem Physiol 132B:453–461

    CAS  Google Scholar 

  18. Saito H (2008) Unusual novel n-4 polyunsaturated fatty acids in cold-seep mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), originating from symbiotic methanotrophic bacteria. J Chromatgr A 1200:242–254

    Article  CAS  Google Scholar 

  19. Johns RB, Nichols PD, Perry GJ (1980) Fatty acid components of nine species of molluscs of the littoral zone from Australian waters. Comp Biochem Physiol 65B:207–214

    CAS  Google Scholar 

  20. Nelson MM, Leighton DL, Phleger CF, Nichols PD (2002) Comparison of growth and lipid composition in the green abalone, Haliotis fulgens, provided specific macroalgal diets. Comp Biochem Physiol 131B:695–712

    CAS  Google Scholar 

  21. Bouchet P, Waren A (1991) Ifremeria nautilei, nouveau gastéropode d’évents hydrothermaux, probablment associe à des bactéries symbiothique. C R Acad Sci Paris, Ser III 312:495–501

    Google Scholar 

  22. Galkin SV (1992) The benthic fauna of hydrothermal vents in the Manus Basin. Oceanology 32:768–774

    Google Scholar 

  23. Windoffer R, Giere O (1992) Symbiosis of the hydrothermal vent gastropod Ifremeria nautilei (Provannidae) with endobacteria—structural analyses and ecological considerations. Biol Bull 193:381–392

    Article  Google Scholar 

  24. Erickson KL, Macko SA, Van Dover CL (2009) Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep Sea Res II 456:1577–1585

    Article  Google Scholar 

  25. Pranal V, Fiala-Médioni A, Guezennec J (1996) Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific. Mar Ecol Prog Ser 142:175–184

    Article  CAS  Google Scholar 

  26. Folch J, Lees M, Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  27. Saito H (2007) Identification of novel n-4 series polyunsaturated fatty acids in a deep-sea clam, Calyptogena phaseoliformis. J Chromatogr A 1163:247–259

    Article  CAS  PubMed  Google Scholar 

  28. Ackman RG, Hooper SN (1973) Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp Biochem Physiol 46B:153–165

    Google Scholar 

  29. Fulco AJ (1983) Fatty acid metabolism in bacteria. Prog Lipid Res 22:133–160

    Article  CAS  PubMed  Google Scholar 

  30. Thiele OW, Oulevey J, Hunneman DH (1984) Ornithine-containing lipids in Thiobacillus A2 and Achromobacter sp. Eur J Biochem 139:131–135

    Article  CAS  PubMed  Google Scholar 

  31. Knief C, Altendorf K, Lipski A (2003) Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids. Environ Microbiol 5:1155–1167

    Article  CAS  PubMed  Google Scholar 

  32. Saito H, Osako K (2007) Confirmation of a new food chain utilizing geothermal energy: unusual fatty acids of a deep-sea bivalve, Calyptogena phaseoliformis. Limnol Oceanogr 52:1910–1918

    Google Scholar 

  33. Zhukova NV (1991) The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Physiol 100B:801–804

    CAS  Google Scholar 

  34. Dunstan GA, Baillie HJ, Barrett SM, Volkman JK (1996) Effect of diet on the lipid composition of wild and cultured abalone. Aquaculture 40:115–127

    Article  Google Scholar 

  35. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103

    Article  CAS  PubMed  Google Scholar 

  36. Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485

    CAS  PubMed  Google Scholar 

  37. Pond DW, Bell MV, Dixon DR, Fallick AE, Segonzac M, Sargent JR (1998) Stable carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl Environ Microbiol 64:370–375

    CAS  PubMed  Google Scholar 

  38. Budge SM, Parrish CC, Mckenzie CH (2001) Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar Chem 76:285–303

    Article  CAS  Google Scholar 

  39. Owen JM, Adron JW, Middleton C, Cowey CB (1975) Elongation and desaturation of dietary fatty acids in turbot Scophthalmus maximus L., and rainbow trout Salmo gairdneri Rich. Lipids 10:528–531

    Article  CAS  PubMed  Google Scholar 

  40. Yamada K, Kobayashi K, Yone Y (1980) Conversion of linolenic acid to ω3 highly unsaturated fatty acids in marine fishes and rainbow trout. Bull Jap Soc Sci Fish 46:1231–1233

    CAS  Google Scholar 

  41. Ohshima T, Widjaja HD, Wada S, Koizumi C (1982) A comparison between cultured and wild Ayu lipids. Bull Jap Soc Fish 48:1795–1801

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Mutsumi Sugita, Shiga University, for kindly donating the authentic ceramide aminoethyl phosphonate which originated from the freshwater clam Corbicula sandai and for his valuable discussion of the bivalve lipids. The authors also thank Ms. Sumiko Terada, Ms. Mikiko Tanaka, and Mr. Akihito Takashima for their skilled technical assistance. This work was supported in part by a research project, “Development of New Technology for Treatment and Local Recycling of Biomass, D-2100” from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Saito.

About this article

Cite this article

Saito, H., Hashimoto, J. Characteristics of the Fatty Acid Composition of a Deep-Sea Vent Gastropod, Ifremeria nautilei . Lipids 45, 537–548 (2010). https://doi.org/10.1007/s11745-010-3436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3436-x

Keywords

Navigation