Skip to main content
Log in

The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Over the past 25 years, new techniques, new discoveries, and new ideas have profoundly impacted our understanding of deuterostome interrelationships and, ultimately, deuterostome evolution. During the late 1980s and early 1990s morphological cladistic analyses made predictions about both taxonomic history and homology, predictions that would be tested independent of the morphological characters themselves with the advent of molecular systematics, the rise of evolutionary developmental biology, and continued exploration of the fossil record. Thanks to these three areas of inquiry, we have gone from scenarios where animals like mobile enteropneust hemichordates and chordates were derived from sessile filter-feeding animals like modern lophophorates, echinoderms, and pterobranch hemichordates, to a new perspective where hemichordates are recognized as the nearest living relative of the echinoderms, and that vagile gill-bearing animals like Cambrian vetulicolians are seen—at least by some—as close to the deuterostome last common ancestor, with both sessility and filter-feeding convergent features of deuterostomes (e.g., echinoderm) and non-deuterostomes (e.g., lophophorates) alike. Although much of the backbone of the new deuterostome phylogeny is supported by multiple independent data sets, as are statements of homology of several different morphological characters, in particular the homology of gill slits across Deuterostomia, nonetheless, the next quarter century of study on this remarkable group of animals promises to be as equally illuminating and exciting as the past quarter century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abitua, P. B., Wagner, E., Navarrete, I. A., & Levine, M. (2012). Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature, 492, 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abitua, P. B., Gainous, T. B., Kaczmarczyk, A. N., Winchell, C. J., Hudson, C., Kamata, K., Nakagawa, M., Tsuda, M., Kusakabe, T. G., & Levine, M. (2015). The pre-vertebrate origins of neurogenic placodes. Nature, 524, 462–465.

    Article  CAS  PubMed  Google Scholar 

  • Achatz, J. G., Chiodin, M., Salvenmoser, W., & Martinez, P. (2013). The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Organisms, Diversity & Evolution, 13, 267–286.

    Article  Google Scholar 

  • Aldridge, R. J., Xian-guang, H., Siveter, D. J., Siveter, D. J., & Gabbott, S. E. (2007). The systematics and phylogenetic relationships of vetulicolians. Palaeontology, 50, 131–168.

    Article  Google Scholar 

  • Amemiya, C., Hibino, T., Nakano, H., Yamaguchi, M., Kuraishi, R., & Kiyomoto, M. (2015). Development of ciliarly bands in larvae of the living isocrinid sea lily Metacrinus rotundus. Acta Zoologica (Stockholm), 96, 37–44.

    Article  Google Scholar 

  • Aronowicz, J., & Lowe, C. J. (2006). Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous system. Integrative and Comparative Biology, 46, 890–901.

    Article  CAS  PubMed  Google Scholar 

  • Balser, E. J., & Ruppert, E. E. (1990). Structure, ultrastructure, and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord. Acta Zoologica (Stockholm), 71, 235–249.

    Article  Google Scholar 

  • Bartolomaeus, T. (2001). Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophoroata). Zoomorphology, 120, 135–148.

    Article  Google Scholar 

  • Benton, M. J., & Ayala, F. J. (2003). Dating the tree of life. Science, 300, 1698–1700.

    Article  CAS  PubMed  Google Scholar 

  • Benton, M. J., & Donoghue, P. C. J. (2007). Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24, 26–53.

    Article  CAS  PubMed  Google Scholar 

  • Berná, L., & Alvarez-Valin, F. (2014). Evolutionary genomics of fast evolving tunicates. Genome Biology and Evolution, 6, 1724–1738.

  • Blair, J. E., & Hedges, S. B. (2005). Molecular phylogeny and divergence times of deuterostome animals. Molecular Biology and Evolution, 22, 2275–2284.

    Article  CAS  PubMed  Google Scholar 

  • Bottjer, D. J., Davidson, E. H., Peterson, K. J., & Cameron, R. A. (2006). Review—paleogenomics of echinoderms. Science, 314, 956–960.

    Article  CAS  PubMed  Google Scholar 

  • Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowicz, J., Kirschner, M., Lander, E. S., Thorndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R., & Telford, M. J. (2006). Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature, 444, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Bourlat, S. J., Rota-Stabellli, O., Lanfear, R., & Telford, M. (2009). The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evolutionary Biology, 9, 107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowring, S. A., & Erwin, D. H. (1998). A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today, 8, 1–8.

    Google Scholar 

  • Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., & Kolosov, P. (1993). Calibrating rates of Early Cambrian evolution. Science, 261, 1293–1298.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, S. (2002). Life sentences: detective rummage investigates. The Scientist, 16, 15.

    Google Scholar 

  • Briggs, D. E. G., Lieberman, B. S., Halgedahl, S. L., & Jarrard, R. D. (2005). A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia. Palaeontology, 48, 681–686.

    Article  Google Scholar 

  • Bromham, L. D., & Degnan, B. M. (1999). Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evolution & Development, 1, 166–171.

    Article  CAS  Google Scholar 

  • Brusca, R. C., & Brusca, G. J. (1990). Invertebrates. Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Budd, G. E., & Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society, 75, 253–295.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, C. B. (2002). The anatomy, life habits, and later development of a new species of enteropneust, Harrimania planktophilus (Hemichordata: Harrimaniidae) from Barkley Sound. Biological Bulletin, 202, 182–191.

    Article  PubMed  Google Scholar 

  • Cameron, C. B. (2005). A phylogeny of the hemichordates based on morphological characters. Canadian Journal of Zoology, 83, 196–215.

    Article  Google Scholar 

  • Cameron, C. B., Garey, J. R., & Swalla, B. J. (2000). Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proceedings of the National Academy of Sciences, USA, 97, 4469–4474.

    Article  CAS  Google Scholar 

  • Cannon, J. T., Rychel, A. L., Eccleston, H., Halanych, K. M., & Swalla, B. J. (2009). Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Molecular Phylogenetics and Evolution, 52, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J. T., Kocot, K. M., Waits, D. S., Weese, D. A., Swalla, B. J., Santos, S. R., & Halanych, K. M. (2014). Phylogenomic resolution of the hemichordate and echinoderm clade. Current Biology, 24, 2827–2832.

    Article  CAS  PubMed  Google Scholar 

  • Carine, M. A., & Scotland, R. W. (1999). Taxic and transformational homology: different ways of seeing. Cladistics, 15, 121–129.

    Google Scholar 

  • Caron, J.-B., Conway Morris, S., & Shu, D. (2010). Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE 5, e9586.

  • Caron, J.-B., Conway Morris, S., & Cameron, C. B. (2013). Tubicolous enteropneusts from the Cambrian period. Nature, 495, 503–506.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2005). From DNA to diversity: molecular genetics and the evolution of animal design. Malden: Blackwell Science.

    Google Scholar 

  • Castresana, J., Feldmaier-Fuchs, G., & Pääbo, S. (1998a). Codon reassignment and amino acid composition in hemichordate mitochondria. Proceedings of the National Academy of Sciences, USA, 95, 3703–3707.

    Article  CAS  Google Scholar 

  • Castresana, J., Feldmaier-Fuchs, G., Yokobori, S.-i., Satoh, N., & Pääbo, S. (1998b). The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics, 150, 1115–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conway Morris, S., & Caron, J.-B. (2012). Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian fo British Columbia. Biological Reviews of the Cambridge Philosophical Society, 87, 480–512.

    Article  Google Scholar 

  • Conway Morris, S., & Caron, J.-B. (2014). A primitive fish from the Cambrian of North America. Nature, 512, 419–422.

    Article  CAS  Google Scholar 

  • Darwin, C. (1844). Observations on the structure and propagation of the genus Sagitta. Annual Magazine of Natural History, Series 1, 13, 1–6.

    Google Scholar 

  • de Mendoza, A., & Ruiz-Trillo, I. (2011). The mysterious evolutionary origin for the GNE gene and the root of the Bilateria. Molecular Biology and Evolution, 28, 2987–2991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399, 772–776.

    Article  CAS  PubMed  Google Scholar 

  • Dehal, P., Satou, Y., Campbell, R. K., Chapman, J., Degnan, B., De Tomaso, A., Davidson, B., Di Gregorio, A., Gelpke, M., Goodstein, D. M., Harafuji, N., Hastings, K. E. M., Ho, I., Hotta, K., Huang, W., Kawashima, T., Lemaire, P., Martinez, D., Meinertzhagen, I. A., Necula, S., Nonaka, M., Putnam, N., Rash, S., Saiga, H., Satake, M., Terry, A., Yamada, L., Wang, H. G., Awazu, S., Azumi, K., Boore, J., Branno, M., Chin-bow, S., DeSantis, R., Doyle, S., Francino, P., Keys, D. N., Haga, S., Hayashi, H., Hino, K., Imai, K. S., Inaba, K., Kano, S., Kobayashi, K., Kobayashi, M., Lee, B. I., Makabe, K. W., Manohar, C., Matassi, G., Medina, M., Mochizuki, Y., Mount, S., Morishita, T., Miura, S., Nakayama, A., Nishizaka, S., Nomoto, H., Ohta, F., Oishi, K., Rigoutsos, I., Sano, M., Sasaki, A., Sasakura, Y., Shoguchi, E., Shin-i, T., Spagnuolo, A., Stainier, D., Suzuki, M. M., Tassy, O., Takatori, N., Tokuoka, M., Yagi, K., Yoshizaki, F., Wada, S., Zhang, C., Hyatt, P. D., Larimer, F., Detter, C., Doggett, N., Glavina, T., Hawkins, T., Richardson, P., Lucas, S., Kohara, Y., Levine, M., Satoh, N., & Rokhsar, D. S. (2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science, 298, 2157–2167.

    Article  CAS  PubMed  Google Scholar 

  • Delsuc, F., Brinkman, H., & Philippe, H. (2005). Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics, 6, 361–375.

    Article  CAS  PubMed  Google Scholar 

  • Delsuc, F., Brinkman, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez, P., Jacobson, A. G., & Jefferies, R. P. S. (2002). Paired gill slits in a fossil with a calcite skeleton. Nature, 417, 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Donoghue, P. C. J., & Benton, M. J. (2007). Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution, 22, 424–431.

    Article  PubMed  Google Scholar 

  • Donoghue, P. C. J., & Keating, J. N. (2014). Early vertebrate evolution. Palaeontology, 57, 879–893.

    Article  Google Scholar 

  • dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C. J., and Yang, Z. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Current Biology in press.

  • Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F., & Philippe, H. (2004). The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proceedings of the National Academy of Sciences, USA, 101, 15386–15391.

    Article  CAS  Google Scholar 

  • Dunn, E. F., Moy, V. N., Angerer, L. M., Angerer, R. C., Morris, R. L., and Peterson, K. J. (2007). Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian Evolution & Development in press.

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Haddock, S. H. D., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R. M., Wheeler, W. C., Martindale, M. Q., & Giribet, G. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 397, 707–710.

    Google Scholar 

  • Edgecombe, G. D., Giribet, G., Dunn, C. W., Hejnol, A., Kristensen, R. M., Neves, R. C., Rouse, G. W., Worsaae, K., & Sørensen, M. V. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms, Diversity & Evolution, 11, 151–172.

    Article  Google Scholar 

  • Eernisse, D. J., Albert, J. S., & Anderson, F. E. (1992). Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology, 41, 305–330.

    Article  Google Scholar 

  • Erwin, D. H., LaFlamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., & Peterson, K. J. (2011). The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334, 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  • Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., & Raff, R. A. (1988). Molecular phylogeny of the animal kingdom. Science, 239, 748–753.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, R., Ikuta, T., Wu, M., Koyanagi, R., Kawashima, T., Tagawa, K., Humphreys, T., Fang, G. C., Fujiyama, A., Saiga, H., Lowe, C., Worley, K., Jenkins, J., Schmutz, J., Kirschner, M., Rokhsar, D., Satoh, N., & Gerhart, J. (2012). Identical genomic organization of two hemichordate Hox clusters. Current Biology, 22, 2053–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsch, G., Böhme, M. U., Thorndyke, M., Nakano, H., Israelsson, O., Stach, T., Schlegel, M., Hankeln, T., & Stadler, P. F. (2008). PCR survey of Xenoturbella bocki Hox genes. Journal of Experimental Zoology (Molecular and Developmental Evolution), 310B, 278–284.

    Article  CAS  Google Scholar 

  • Furlong, R. F., & Holland, P. W. H. (2002). Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of Cyclostomes. Zoological Science, 19, 593–599.

    Article  PubMed  Google Scholar 

  • Gans, C., & Northcutt, R. G. (1983). Neural crest and the origin of vertebrates: a new head. Science, 220, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • García-Bellido, D. C., Lee, M. S. Y., Edgecombe, G. D., Jago, J. B., Gehling, J. G., & Paterson, J. R. (2014). A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrain group. BMC Evolutionary Biology, 14, 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garstang, W. (1928). The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. Quarterly Journal of Microscopical Science, 72, 51–187.

    Google Scholar 

  • Gee, H. (1996). Before the backbone: views on the origin of the vertebrates. London: Chapman & Hall.

    Google Scholar 

  • Gee, H. (2001). On being vetulicolian. Nature, 414, 407–408.

    Article  CAS  PubMed  Google Scholar 

  • Ghiselin, M. T. (1989). Summary of our present knowledge of metazoan phylogeny. In B. Fernholm, K. Bremer, & H. Jörnvall (Eds.), The Hierarchy of Life. Molecules and Morphology in Phylogenetic Analysis (pp. 261–272). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Gillis, J. A., Fritzenwanker, J. H., & Lowe, C. J. (2012). A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proceedings of the Royal Society of London B: Biological Sciences, 279, 237–246.

    Article  Google Scholar 

  • Giribet, G., Distel, D. L., Polz, M., Sterrer, W., & Wheeler, W. C. (2000). Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S RNDA sequences and morphology. Systematic Biology, 49, 539–562.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, P., & Cameron, C. B. (2009). The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeing structures. Biological Journal of the Linnean Society, 98, 898–906.

    Article  Google Scholar 

  • Gould, S. J. (1989). Wonderful life. New York and London: W. W. Norton & Company.

    Google Scholar 

  • Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17, 411–423.

    Google Scholar 

  • Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., & Kaufman, A. J. (1995). Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270, 598–604.

    Article  CAS  Google Scholar 

  • Gustus, R. M., & Cloney, R. A. (1972). Ultrastructural similarities between setae of brachiopods and polychaetes. Acta Zoologica (Stockholm), 53, 229–233.

    Article  Google Scholar 

  • Halanych, K. M. (1995). The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Molecular Phylogenetics and Evolution, 4, 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Halanych, K. M. (1996a). Convergence in the feeding apparatuses of lophophorates and pterobranch hemichordates revealed by 18S rDNA: an interpretation. Biological Bulletin, 190, 1–5.

    Article  Google Scholar 

  • Halanych, K. M. (1996b). Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Systematic Biology, 45, 223–246.

    Article  Google Scholar 

  • Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A., Liva, S. M., Hillis, D. M., & Lake, J. A. (1995). Evidence from 18S Ribosomal DNA that the lophophorates are protostome animals. Science, 267, 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Halanych, K. M., Cannon, J. T., Mahon, A. R., Swalla, B. J., & Smith, C. R. (2013). Modern Antartic acorn worms form tubes. Nature Communications, 4, 2738.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, T. H. P., Ortega-Martinez, O., Lin, J.-P., Zhao, Y., & Butterfield, N. J. (2012). Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China. Acta Palaeontologica Polonica, 57, 423–436.

    Article  Google Scholar 

  • Hausdorf, B., Helmkampf, M., Nesnidal, M. P., & Bruchhaus, I. (2010). Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Molecular Phylogenetics and Evolution, 55, 1121–1127.

    Article  PubMed  Google Scholar 

  • Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G. W., Edgecombe, G. D., Martinez, P., Baguñà, J., Bailly, X., Jondelius, U., Wiens, M., Müller, W. E. G., Seaver, E., Wheeler, W. C., Martindale, M. Q., Giribet, G., & Dunn, C. W. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society of London B: Biological Sciences, 276, 4261–4270.

    Article  Google Scholar 

  • Helfenbein, K. G., Fourcade, H. M., Vanjani, R. G., & Boore, J. L. (2004). The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proceedings of the National Academy of Sciences, USA 101, 10639–10643.

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008a). Multigene analysis of lophophorate and chaetognath phylogenetic relationships. Molecular Phylogenetics and Evolution, 46, 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008b). Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proceedings of the Royal Society of London. Series B: Biological Sciences, 275, 1927–1933.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho, S. Y. W., & Duchene, S. (2014). Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology, 23, 5947–5965.

    Article  PubMed  Google Scholar 

  • Holland, N. D., & Holland, L. Z. (1995). An amphioxus Pax gene, AmphiPax-1, expresssed in embryonic endoderm, but not in mesoderm: implications for the evolution of class I paired box genes. Molecular Marine Biology and Biotechnology, 4, 206–214.

    Article  CAS  PubMed  Google Scholar 

  • Holland, P. W. H., Hacker, A. M., & Williams, N. A. (1991). A molecular analysis of the phylogenetic affinities of Saccoglossus cambrensis Brambell & Cole (Hemichordata). Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 332, 185–189.

    Article  CAS  Google Scholar 

  • Holland, N. D., Clague, D. A., Godon, D. P., Gebruk, A., Pawson, D. L., & Vecchione, M. (2005). ‘Lophenteropneust’ hypothesis refuted by collection and photos of new deep- sea hemichordates. Nature, 434, 374–376.

    Article  CAS  PubMed  Google Scholar 

  • Holland, N. D., Holland, L. Z., & Holland, P. W. H. (2015). Scenarios for the making of vertebrates. Nature, 520, 450–455.

    Article  CAS  PubMed  Google Scholar 

  • Hou, X.-g., Aldridge, R. J., Siveter, D. J., Siveter, D. J., Williams, M., Zalasiewicz, J., & Ma, X.-y. (2011). An Early Cambrian hemichordate zooid. Current Biology, 21, 612–616.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, A. L., & Friedman, R. (2005). Loss of ancestral genes in the genomic evolution of Ciona intestinalis. Evolution & Development, 7, 196–200.

    Article  CAS  Google Scholar 

  • Hyman, L. H. (1959). The invertebrates: smaller coelomate groups. New York: McGraw Hill.

    Google Scholar 

  • Jang, K. H., & Hwang, U. W. (2009). Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): phylogenetic position of Bryozoa and phylogeny of lophophorates within the Lophotrochozoa. BMC Genomics, 10, 167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janies, D. (2001). Phylogenetic relationships of extant echinoderm classes. Canadian Journal of Zoology, 79, 1232–1250.

    Article  CAS  Google Scholar 

  • Janies, D. A., Voight, J. R., & Daly, M. (2011). Echinoderm phylogeny including XyloplaxI, a progenetic asteroid. Systematic Biology, 60, 420–438.

    Article  PubMed  Google Scholar 

  • Janvier, P. (2015). Facts and fancies about early fossil chordates and vertebrates. Nature, 520, 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Jefferies, R. P. S. (1986). The Ancestry of the Vertebrates. London: British Museum (Natural History).

    Google Scholar 

  • Kapp, H. (2000). The unique embryology of Chaetognatha. Zoologische Anzeiger, 239, 263–266.

  • Knoll, A. H., & Carroll, S. B. (1999). Early animal evolution: emerging views from comparative biology and geology. Science, 284, 2129–2137.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. (2005). Molecular clocks: four decades of evolution. Nature Reviews Genetics, 6, 654–662.

    Article  CAS  PubMed  Google Scholar 

  • Lacalli, T. C. (2002). Vetulicolians—are they deuterostomes? Chordates? Bioessays, 24, 208–211.

    Article  PubMed  Google Scholar 

  • Lake, J. A. (1990). Origin of the Metazoa. Proceedings of the National Academy of Sciences, USA, 87, 763–766.

    Article  CAS  Google Scholar 

  • Lang, D., Powell, S. K., Plummer, R. S., Young, K. P., & Ruggeri, B. A. (2007). PAX genes: roles in development, pathophysiology, and cancer. Biochemical Pharmacology, 73, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sørensen, M. V., Kristensen, R. M., Hejnol, A., Dunn, C. W., Giribet, G., & Worsaae, K. (2015). Spiralian phylogeny informs the evolution of microscopic lineages. Current Biology, 25, 2000–2006.

    Article  CAS  PubMed  Google Scholar 

  • Littlewood, D. T. J., Smith, A. B., Clough, K. A., & Emson, R. H. (1997). The interrelationships of the echinoderm classes: morphological and molecular evidence. Biological Journal of the Linnean Society, 61, 409–438.

    Article  Google Scholar 

  • Liu, X., Li, G., Liu, X., & Wang, Y.-Q. (2014). The role of the Pax1/9 gene in the early development of amphioxus pharyngeal gill slits. Journal of Experimental Zoology (Molecular and Developmental Evolution), 324B, 30–40.

    Google Scholar 

  • Løvtrup, S. (1977). The phylogeny of vertebrata. London: John Wiley & Sons.

    Google Scholar 

  • Lowe, C. J., Clarke, D. N., Medieros, D. M., Rokhsar, D., & Gerhart, J. (2015). The deuterostome context of chordate origins. Nature, 520, 456–465.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y.-J., Takeuchi, T., Koyanagi, R., Yamada, L., Kanda, M., Khalturina, M., Fujie, M., Yamasaki, S.-i., Endo, K., & Satoh, N. (2015). The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications, 6, 8301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüter, C., & Bartolomaeus, T. (1997). The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data. Zoologica Scripta, 26, 245–253.

    Article  Google Scholar 

  • Mackey, L. Y., Winnepenninckx, B., De Wachter, R., Backeljau, T., Emschermann, P., & Garey, J. R. (1996). 18S rRNA suggests that Entoprocta and protostomes, unrelated to Ectoprocta. Journal of Molecular Evolution, 42, 552–559.

    Article  CAS  PubMed  Google Scholar 

  • Maisey, J. G. (1986). Heads and tails: a chordate phylogeny. Cladistics, 2, 201–256.

    Article  Google Scholar 

  • Maletz, J. (2014). Hemichordata (Pterobranchia, Enteropneusta) and the fossil record. Palaeogeography Palaeoclimatology Palaeoecology, 398, 16–27.

    Article  Google Scholar 

  • Maletz, J., & Steiner, M. (2015). Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3. Palaeontology. doi:10.1111/pala.12200.

    Google Scholar 

  • Mallatt, J., & Winchell, C. J. (2007). Ribosomal RNA gene and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles and a brittle star. Molecular Phylogenetics and Evolution, 43, 1005–1022.

    Article  CAS  PubMed  Google Scholar 

  • Marlétaz, F., Martin, E., Perez, Y., Papillon, D., Caubit, X., Lowe, C. J., Freeman, B., Fasano, L., Dossat, C., Wincker, P., Weissenbach, J., & Le Parco, Y. (2006). Chaetognath phylogenomics: a protostome with deuterostome-like development. Current Biology, 16, R577–R578.

    Article  PubMed  CAS  Google Scholar 

  • Marlétaz, F., Gilles, A., Caubit, X., Perez, Y., Dossat, C., Samain, S., Gyapay, G., Wincker, P., & Le Parco, Y. (2008). Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biology, 9, R94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matus, D. Q., Copley, R. R., Dunn, C. W., Hejnol, A., Eccleston, H., Halanych, K. M., Martindale, M. Q., & Telford, M. J. (2006). Broad taxon and gene sampling indicate that chaetognaths are protostomes. Current Biology, 16, R575–R576.

    Article  CAS  PubMed  Google Scholar 

  • Metschnikoff, V. E. (1881). Über die systematische Stellung von Balanoglassus. Zoologische Anzeiger, 4, 139–157.

    Google Scholar 

  • Mooi, R., & David, B. (2000). What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist, 40, 326–339.

    Google Scholar 

  • Nakano, H., Hibino, T., Oji, T., Hara, Y., & Amemiya, S. (2003). Larval stages of a living sea lily (stalked crinoid echinoderm). Nature, 421, 158–160.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, H., Lundin, K., Bourlat, S. J., Telford, M. J., Funch, P., Nyengaard, J. R., Obst, M., & Thorndyke, M. C. (2013). Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nature Communications, 4, 1537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nesnidal, M. P., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., Hankeln, T., Lieb, B., Struck, T. H., & Hausdorf, B. (2013). New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evolutionary Biology, 13, 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society, 25, 243–299.

    Article  Google Scholar 

  • Nielsen, C. (1987). Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica (Stockholm), 68, 205–262.

    Article  Google Scholar 

  • Nielsen, C. (2010). After all: Xenoturbella is an acoelomorph! Evolution & Development, 12, 241–243.

    Article  Google Scholar 

  • Nielsen, C., Scharff, N., & Eibye-Jacobsen, D. (1996). Cladistic analysis of the animal kingdom. Biological Journal of the Linnean Society, 57, 385–410.

    Article  Google Scholar 

  • Ogasawara, M. (2000). Overlapping expression of amphioxus homologs of the thyroid transcription factor-1 gene and thyroid peroxidase gene in the endostyle: insight into evolution of the thyroid gland. Development Genes and Evolution, 210, 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara, M., Wada, H., Peters, H., & Satoh, N. (1999). Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development, 126, 2539–2550.

    CAS  PubMed  Google Scholar 

  • O'Hara, T. D., Hugall, A. F., Thuy, B., & Moussalli, A. (2014). Phylogenomic resolution of the Class Ophiuroidea unlocks a global microfossil record. Current Biology, 24, 1874–1879.

    Article  PubMed  CAS  Google Scholar 

  • Orrhage, L. (1973). Light and electron microscope studies of some brachiopod and pogonophoran setae. Zeitschrift für Morphologie der Tiere, 74, 253–270.

    Article  Google Scholar 

  • Osborn, K. J., Kuhnz, L. A., Priede, I. G., Urata, M., Gebruk, A. V., & Holland, N. D. (2012). Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea. Proceedings of the Royal Society of London B: Biological Sciences, 279, 1646–1654.

    Article  Google Scholar 

  • Ou, Q., Conway Morris, S., Han, J., Zhang, Z., Liu, J., Chen, A., Zhang, X., & Shu, D. (2012). Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes. BMC Biology, 10, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Passamaneck, Y. J., & Halanych, K. M. (2004). Evidence from Hox genes that bryozoans are lophotrochozoans. Evolution & Development, 6, 275–281.

    Article  CAS  Google Scholar 

  • Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of Phylogenetic Reconstruction (pp. 21–74). London and New York: Academic.

    Google Scholar 

  • Patterson, C. (1988). Homology in classical and molecular biology. Molecular Biology and Evolution, 5, 603–625.

    CAS  PubMed  Google Scholar 

  • Patterson, C. (1989). Phylogenetic relations of major groups: conclusions and prospects. In B. Fernholm, K. Bremer, & H. Jörnvall (Eds.), The hierarchy of life. Molecules and morphology in phylogenetic analysis (pp. 471–488). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Perseke, M., Hetmank, J., Bernt, M., Stadler, P. F., Schlegel, M., & Bernhard, D. (2011). The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria. BMC Evolutionary Biology, 11, 134.

  • Perseke, M., Golombek, A., Schlegel, M., & Struck, T. H. (2013). The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Molecular Phylogenetics and Evolution, 66, 898–905.

    Article  PubMed  Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2010). A gene regulatory network controlling the embryonic specification of endoderm. Nature, 474, 635–639.

    Article  CAS  Google Scholar 

  • Peterson, K. J. (1995). A phylogenetic test of the calcichordate scenario. Lethaia, 28, 25–38.

    Article  Google Scholar 

  • Peterson, K. J. (2004). Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Molecular Phylogenetics and Evolution, 31, 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, K. J. (2005). Macroevolutionary interplay between planktic larvae and benthic predators. Geology, 33, 929–932.

    Article  Google Scholar 

  • Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development, 3, 170–205.

    Article  CAS  Google Scholar 

  • Peterson, K. J., Cameron, R. A., Tagawa, K., Satoh, N., & Davidson, E. H. (1999). A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development, 126, 85–95.

    CAS  PubMed  Google Scholar 

  • Peterson, K. J., Arenas-Mena, C., & Davidson, E. H. (2000). The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evolution & Development, 2, 93–101.

    Article  CAS  Google Scholar 

  • Peterson, K. J., Summons, R. E., & Donoghue, P. C. J. (2007). Molecular paleobiology. Palaeontology, 50, 775–809.

    Article  Google Scholar 

  • Peterson, K. J., Cotton, J. A., Gehling, J. G., & Pisani, D. (2008). The Ediacaran emergence of bilaterians: congruence between the genetic and geologic fossil records. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363, 1435–1443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, K. J., Su, Y.-H., Arnone, M. I., Swalla, B., and King, B. L. (2013). MicroRNAs support the monophyly of enteropneust hemichordates. Journal of Experimental Zoology (Molecular and Developmental Evolution), 320B, 368–374.

  • Philippe, H., Lartillot, N., & Brinkmann, H. (2005). Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution, 22, 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Queinnec, E., Da Silva, C., Wincker, P., Le Guyader, H., Leys, S., Jackson, D. J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Worheide, G., & Manuel, M. (2009). Phylogenomics revives traditional views on deep animal relationships. Current Biology, 19, 706–712.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., Wallberg, A., Peterson, K. J., & Telford, M. J. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470, 255–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani, D., Feuda, R., Peterson, K. J., & Smith, A. B. (2012). Resolving phylogenetic signal from noise when divergence is rapid: a new approach to the old problem of echinoderm class relationships. Molecular Phylogenetics and Evolution, 62, 27–34.

    Article  PubMed  Google Scholar 

  • Putnam, N. H., Butts, T., Ferrier, D. E. K., Furlong, R. F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J., Benito-Gutierrez, E., Dubchak, I., Garcia-Fernandez, J., Gibson-Brown, J. J., Grigoriev, I. V., Horton, A. C., de Jong, P. J., Jurka, J., Kapitonov, V. V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L. A., Salamov, A. A., Satou, Y., Sauka-Spengler, T., Schmutz, J., Shin-I, T., Toyoda, A., Bronner-Fraser, M., Fujiyama, A., Holland, L. Z., Holland, P. W. H., Satoh, N., & Rokhsar, D. S. (2008). The amphioxus genome and the evolution of the chordate karyotype. Nature, 453, 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  • Raff, R. A. (2000). Evo-devo: the evolution of a new discipline. Nature Reviews Genetics, 1, 74–79.

    Article  CAS  PubMed  Google Scholar 

  • Raff, R. A. (2007). Written in stone: fossils, genes and evo-devo. Nature Reviews Genetics, 8, 911–920.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, I. A., Zamora, S., Falkingham, P. L., and Phillips, J. C. (2015). Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proceedings of the Royal Society of London B Biological Sciences 282, doi: 10.1098/rspb.2015.1964

  • Reich, A., Dunn, C., Akasaka, K., & Wessel, G. M. (2015). Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One, 10, e0119627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romer, A. S. (1967). Major steps in vertebrate evolution. Science, 158, 1629–1637.

    Article  CAS  PubMed  Google Scholar 

  • Romer, A. S. (1970). The vertebrate body. Philadelphia: Saunders.

    Google Scholar 

  • Romer, A. S. (1972). The vertebrate as a dual animal—somatic and visceral. Evolutionary Biology, 6, 121–156.

    Article  Google Scholar 

  • Röttinger, E., & Lowe, C. J. (2012). Evolutionary crossroads in developmental biology: hemichordates. Development, 139, 263–2475.

    Article  CAS  Google Scholar 

  • Rowe, T. (2004). Chordate phylogeny and development. In J. Cracraft & M. J. Donoghue (Eds.), Assembling the Tree of Life (pp. 384–409). Oxford: Oxford University Press.

    Google Scholar 

  • Ruiz-Trillo, I., & Paps, J. (2015). Acoelomorpha: earliest branching bilaterians or deuterostomes? Organisms, Diversity & Evolution. doi:10.1007/s13127-015-0239-1.

    Google Scholar 

  • Runnegar, B. (1982). A molecular-clock date for the origin of the animal phyla. Lethaia, 15, 199–205.

    Article  Google Scholar 

  • Runnegar, B. (1986). Molecular palaeontology. Palaeontology, 29, 1–24.

    Google Scholar 

  • Ruppert, E. E. (1982). Comparative ultrastructure fo the gastrotrich pharynx and the evolution of myoepithelial foreguts in Aschelminthes. Zoomorphology, 99, 181–220.

    Article  Google Scholar 

  • Ruppert, E. E. (2005). Key characters uniting hemichordates and chordates: homologies or homoplasies? Canadian Journal of Zoology, 83, 8–23.

    Article  Google Scholar 

  • Ruppert, E. E., & Balser, E. J. (1986). Nephridia in the larvae of hemichordates and echinoderms. Biological Bulletin, 171, 188–196.

    Article  Google Scholar 

  • Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K., & Erich, H. (1988). Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Sato, A., Bishop, J. D. D., & Holland, P. W. H. (2008). Developmental biology of pterobranch hemichordates: history and perspectives. Genesis, 46, 587–591.

    Article  PubMed  Google Scholar 

  • Satoh, N., Rokhsar, D., & Nishikawa, T. (2014a). Chordate evolution and the three-phylum system. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20141729.

    Article  Google Scholar 

  • Satoh, N., Tagawa, K., Lowe, C. J., Yu, J. K., Kawashima, T., Takahashi, H., Ogasawara, M., Kirschner, M., Hisata, K., Su, Y. H., & Gerhart, J. (2014b). On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis, 52, 925–934.

    Article  PubMed  Google Scholar 

  • Schaeffer, B. (1987). Deuterostome monophyly and phylogeny. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary Biology (pp. 179–235). New York: Plenum.

    Chapter  Google Scholar 

  • Schram, F. R. (1991). Cladistic analysis of metazoan phyla and the placement of fossil problematica. In A. M. Simonetta & S. Conway Morris (Eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa (pp. 35–46). Cambridge: Cambridge University Press.

    Google Scholar 

  • Seilacher, A. (1989). Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia, 22, 229–239.

    Article  Google Scholar 

  • Seilacher, A. (1994). Early multicellular life: Late Proterozoic fossils and the Cambrian explosion. In S. Bengtson (Ed.), Early Life on Earth. Nobel Symposium No. 84 (pp. 389–400). New York: Columbia University Press.

    Google Scholar 

  • Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang, X.-L., Zhang, X.-F., Liu, H.-Q., & Liu, J.-N. (2001). Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414, 419–424.

    Article  CAS  PubMed  Google Scholar 

  • Shu, D., Conway Morris, S., Zhang, Z. F., Liu, J. N., Han, J., Chen, L., Zhang, X. L., Yasui, K., & Li, Y. (2003). A new species of yunnanozoan with implications for deuterostome evolution. Science, 299, 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  • Shu, D.-G., Conway Morris, S., Zhang, Z.-F., & Han, J. (2010). The earliest history of the deuterostomes: the importance of the Chengjiang fossil-Lagerstätte. Proceedings of the Royal Society of London B: Biological Sciences, 277, 165–174.

    Article  Google Scholar 

  • Simakov, O., Kawashima, T., Marletaz, F., Jenkins, J., Koyanagi, R., Mitros, T., Hisata, K., Bredeson, J., Shoguchi, E., Gyoja, F., Yue, J. X., Chen, Y. C., Freeman, R. M., Sasaki, A., Hikosaka-Katayama, T., Sato, A., Fujie, M., Baughman, K. W., Levine, J., Gonzalez, P., Cameron, C., Fritzenwanker, J. H., Pani, A. M., Goto, H., Kanda, M., Arakaki, N., Yamasaki, S., Qu, J., Cree, A., Ding, Y., Dinh, H. H., Dugan, S., Holder, M., Jhangiani, S. N., Kovar, C. L., Lee, S. L., Lewis, L. R., Morton, D., Nazareth, L. V., Okwuonu, G., Santibanez, J., Chen, R., Richards, S., Muzny, D. M., Gillis, A., Peshkin, L., Wu, M., Humphreys, T., Su, Y. H., Putnam, N. H., Schmutz, J., Fujiyama, A., Yu, J. K., Tagawa, K., Worley, K. C., Gibbs, R. A., Kirschner, M. W., Lowe, C. J., Satoh, N., Rokhsar, D. S., & Gerhart, J. (2015). Hemichordate genomes and deuterostome origins. Nature, 527, 459–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, T. R., Tsagkogeorga, G., Delsuc, F., Blanquart, S., Shenkar, N., Loya, Y., Douzery, E. J. P., & Huchon, D. (2009). Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics, 10, 534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith, A. B. (2005). The pre-radial history of echinoderms. Geological Journal, 40, 255–280.

    Article  Google Scholar 

  • Smith, A. B. (2008). Deuterostomes in a twist: the origins of a radical new body plan. Evolution & Development, 10, 493–503.

    Article  Google Scholar 

  • Smith, A. B. (2012). Cambrian problematica and the diversification of deuterostomes. BMC Biology, 10, 79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, A. B., & Peterson, K. J. (2002). Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30, 65–88.

    Article  CAS  Google Scholar 

  • Smith, A. B., Peterson, K. J., Wray, G., and Littlewood, D. T. J. (2004). From bilateral symmetry to pentaradiality: the phylogeny of hemichordates and echinoderms. In “Assembling the Tree of Life” (J. Cracraft and M. J. Donoghue, Eds.), pp. 365–383. Oxford University Press, Oxford; New York.

  • Smith, A. B., Zamora, S., & Alvaro, J. (2013). The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications, 4, 1385.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., & Knoll, A. H. (2013). Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, USA, 110, 13446–13451.

    Article  CAS  Google Scholar 

  • Stach, T. (2008). Chordate phylogeny and evolution: a not so simple three-taxon problem. Journal of Zoology, 276, 117–141.

    Article  Google Scholar 

  • Stach, T. (2013). Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies. Naturwissenschaften, 100, 1187–1191.

    Article  CAS  PubMed  Google Scholar 

  • Stechmann, A., & Schlegel, M. (1999). Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Proceedings of the Royal Society of London B: Biological Sciences, 266, 2043–2052.

    Article  CAS  Google Scholar 

  • Sun, M. S., Shen, X.-X., Liu, H., Liu, X., Wu, Z., & Liu, B. (2011). Complete mitochondrial genome of Tubulipora flabellaris (Bryozoa: Stenolaemata): the first representative from the class Stenolaemata with unique gene order. Marine Genomics, 4, 159–165.

    Article  PubMed  Google Scholar 

  • Swalla, B. J., & Smith, A. B. (2008). Deciphering deuterostome phylogeny: molecular, morphological and paleontological perspectives. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 363, 1557–1568.

    Article  Google Scholar 

  • Takacs, C. M., Moy, V. N., & Peterson, K. J. (2002). Testing putative hemichordate homologues of the chordates dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evolution & Development, 4, 405–417.

    Article  CAS  Google Scholar 

  • Tarver, J. E., Sperling, E. A., Nailor, A., Heimberg, A. M., Robinson, J. M., King, B. L., Pisani, D., Donoghue, P. C. J., & Peterson, K. J. (2013). miRNAs: small genes with big potential in metazoan phylogenetics. Molecular Biology and Evolution, 30, 2369–2382.

    Article  CAS  PubMed  Google Scholar 

  • Telford, M. J., & Holland, P. W. H. (1993). The phylogenetic affinities of the chaetognaths: a molecular analysis. Molecular Biology and Evolution, 10, 660–676.

    CAS  PubMed  Google Scholar 

  • Telford, M. J., Lowe, C. J., Cameron, C. B., Ortega-Martinez, O., Aronowicz, J., Oliveri, P., & Copley, R. R. (2014). Phylogenomic analysis of echinoderms class relationships supports Asterozoa. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140479.

    Article  Google Scholar 

  • Tsagkogeorga, G., Turon, X., Galtier, N., Douzery, E. J. P., & Delsuc, F. (2010). Accelerated evolutionary rate of housekeeping genes in tunicates. Journal of Molecular Evolution 71, 153–167.

  • Turbeville, J. M., Schultz, J. R., & Raff, R. A. (1994). Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution, 11, 648–655.

    CAS  PubMed  Google Scholar 

  • Vinther, J., Smith, M. P., & Harper, D. A. T. (2011). Vetulicolians from the Lower Cambrian Sirius Passes Lagerstätte, North Greenland, and the polarity of morphological characters in basal deuterostomes. Palaeontology, 54, 711–719.

    Article  Google Scholar 

  • Wada, H., & Satoh, N. (1994). Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proceedings of the National Academy of Sciences, USA, 91, 1801–1804.

    Article  CAS  Google Scholar 

  • Waeschenbach, A., Telford, M. J., Porter, J. S., & Littlewood, D. T. J. (2006). The complete mitochondrial genome of Flustrellidra hispida and the phylogenetic position of Bryozoa among the Metazoa. Molecular Phylogenetics and Evolution, 40, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. D., Geissman, J. W., Bowring, S. A., & Babcock, L. E. (2013). The Geological Society of America geologic time scale. GSA Bulletin, 125, 259–272.

    Article  CAS  Google Scholar 

  • Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J., & Mallatt, J. (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution, 19, 762–776.

    Article  CAS  PubMed  Google Scholar 

  • Winnepenninckx, B., Backeljau, T., Mackey, L. Y., Brooks, J. M., De Wachter, R., Kumar, S., & Garey, J. R. (1995). 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution, 12, 1132–1137.

    CAS  PubMed  Google Scholar 

  • Wray, G. A., Levinton, J. S., & Shapiro, L. H. (1996). Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–573.

    Article  CAS  Google Scholar 

  • Xian-guang, H., Aldridge, R. J., Bergström, J., Siveter, D. J., and Xiang-Hong, F. (2004). “The Cambrian fossils of Chengjiang, China: the flowering of early animal life.” Blackwell Publishing, Malden; Oxford; Carlton.

  • Yokobori, S.-i., Iseto, T., Asakawa, S., Sasaki, T., Shimizu, N., Yamagishi, A., Oshima, T., & Hirose, E. (2008). Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny. Molecular Phylogenetics and Evolution, 47, 612–628.

    Article  CAS  PubMed  Google Scholar 

  • Zamora, S., & Rahman, I. A. (2014). Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology, 57, 1105–1119.

    Article  Google Scholar 

  • Zamora, S., Rahman, I. A., & Smith, A. B. (2012). Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One, 7, e38296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, L., & Swalla, B. J. (2005). Molecular phylogeny of the protochordates: chordate evolution. Canadian Journal of Zoology, 83, 24–33.

    Article  CAS  Google Scholar 

  • Zrzavy, J., Mihulka, S., Kepka, P., Bezdek, A., & Tietz, D. (1998). Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14, 249–285.

    Article  Google Scholar 

  • Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in protiens. In V. Bryson & H. J. Vogel (Eds.), Evolving Genes and Protiens (pp. 97–166). New York: Academic.

    Google Scholar 

Download references

Acknowledgments

We would like to thank A. Cameron, C. Cameron, A. Di Gregorio, C. Lowe, J. Newcomb, P. Oliveri, I. Peter, and I. Rahman for the discussion and images. KJP is supported by NASA-Ames.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Peterson.

Additional information

This article is part of the Special Issue The new animal phylogeny: The first 20 years

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, K.J., Eernisse, D.J. The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. Org Divers Evol 16, 401–418 (2016). https://doi.org/10.1007/s13127-016-0270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0270-x

Keywords

Navigation