Skip to main content

The Vertebrate as a Dual Animal — Somatic and Visceral

  • Chapter
Evolutionary Biology

Abstract

In the study of vertebrate anatomy and embryology, one frequently encounters the terms “somatic” and “visceral.” Musculature is somatic or visceral; there is a somatic skeleton and a visceral skeleton; a somatic nervous system and a visceral nervous system. Are these terms merely descriptive, as regards external or internal position? I believe not. The anatomical and structural differences between the two elements in each organ system and, in great measure, the differences in embryological origin are so marked that the contrasts appear to be basic in the make-up of a vertebrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allis, E. P. 1923. Are the polar and trabecular cartilages of vertebrate embryos the pharyngeal elements of the mandibular and premandibular arches? J. Anat., 58:37–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allis, E. P. 1925. Is the ramus ophthalmicus profundus the ventral nerve of the premandibular segment? J. Anat., 59:217–223.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allis, E. P. 1938. Concerning the development of the prechordal portion of the vertebrate head. J. Anat., 72:584–607.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Andres, G. 1946. Über Induktion und Entwicklung von Kopforganen aus Unkenektoderm im Molch (Epidermis, Plakoden und Derivate der Neuralleiste). Rev. Suisse Zool., 53:502–510.

    Google Scholar 

  • Barrington, E. J. W. 1964. An endocrinological approach to the problem of the origin of the vertebrates. Ann. Soc. Zool. Belgique, 94:161–178.

    Google Scholar 

  • Barrington, E. J. W. 1965. The Biology of Hemichordata and Protochordata. San Francisco, W. H. Freeman &Co.

    Google Scholar 

  • Bartelmez, G. W. 1922. The origin of the otic and optic primordia in man. J. Comp. Neurol., 34:201–232.

    Article  Google Scholar 

  • Bartelmez, G. W. 1923. The subdivisions of the neural folds in man. J. Comp. Neurol., 35:231–247.

    Article  Google Scholar 

  • Berrill, N. J. 1955. The Origin of Vertebrates. Oxford, Clarendon Press.

    Google Scholar 

  • Bone, Q. 1960. The origin of the chordates. J. Linn. Soc. (Zool.), 44:252–296.

    Article  Google Scholar 

  • Buchs, G. 1902. Über den Ursprung des Kopfskeletes bei Necturus. Morph. Jahrb., 29:582–613.

    Google Scholar 

  • Bullock, T. H. 1945. The anatomical organization of the nervous system of the Enteropneusta. Quart. J. Micr. Sci., 86:55–111.

    CAS  Google Scholar 

  • Caullery, M. 1944. Siboglinum Caullery 1914, type nouveau d’invertébrés, d’affinités à préciser. Leiden, E. J. Brill, Siboga Expeditie, 25 bis: 1–26.

    Google Scholar 

  • Corning, H. K. 1899. Ueber einige Entwicklungs-Vorgänge am Kopfe der Anuren. Morph. Jahrb., 27:173–242.

    Google Scholar 

  • Dawydoff, C. 1948. Contribution a la connaissance de Siboglinum Caullery. Bull. Biol. France-Belgique, 82(2–3): 141–163.

    CAS  Google Scholar 

  • DeBeer, G. R. 1937. The Development of the Vertebrate Skull. Oxford, Clarendon Press.

    Google Scholar 

  • DeBeer, G. R. 1947. The differentiation of neural crest cells into visceral cartilages and odontoblasts in Amblystoma, and a re-examination of the germ-layer theory. Proc. Roy. Soc. London [B], 134:377–398.

    Google Scholar 

  • Denison, R. H. 1956. A review of the habitat of the earliest vertebrates. Fieldiana: Geology, 11:359–457.

    Google Scholar 

  • Dohrn, A. 1884. Studien zu Urgeschichte des Wirbeltierkörpers. Mitt. Zool. Sta. Neapel, 5:1–95.

    Google Scholar 

  • Edgeworth, F. H. 1935. The Cranial Muscles of Vertebrates. London, Cambridge University Press.

    Google Scholar 

  • Fell, B. 1948. Echinoderm embryology and the origin of chordates. Biol. Rev., 23:81–107.

    Article  CAS  PubMed  Google Scholar 

  • Garstang, W. 1928. The morphology of the Tunicata and its bearing on the phylogeny of the Chordata. Quart. J. Micr. Sci., 72:51–187.

    Google Scholar 

  • Gaskell, W. H. 1886. On the structure, distribution and function of the nerves which innervate the visceral and vascular systems. J. Physiol., 7:1–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskell, W. H. 1908. The Origin of the Vertebrates. London, Longmans, Green & Co.

    Book  Google Scholar 

  • Gaskell, W. H. 1916. The Involuntary Nervous System. London, Longmans, Green & Co.

    Google Scholar 

  • Gilbert, P. W. 1947. The origin and development of the extrinsic ocular muscles in the domestic cat. J. Morph., 81:151–194.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, P. W. 1952. The origin and development of the head cavities in the human embryo. J. Morph., 90:149–188.

    Article  Google Scholar 

  • Goodrich, E. S. 1918. On the development of the segments of the head in Scyllium. Quart. J. Micr. Sci., 63:1–30.

    Google Scholar 

  • Goodrich, E. S. 1927. The problem of the sympathetic nervous system from the morphological point of view. J. Anat., 61:499–500.

    Google Scholar 

  • Goodrich, E. S. 1930. Studies on the Structure and Development of Vertebrates. London, Macmillan & Co.

    Book  Google Scholar 

  • Grassé, P.-P. (ed.) 1948. Traité de Zoologie. 11. Echinodermes, Stomocordés, Procordés. Paris, Masson et Cie.

    Google Scholar 

  • Gregory, W. K. 1951. Evolution Emerging. Volumes I and II. New York, Macmillan & Co.

    Google Scholar 

  • Gross, W. 1950. Die paläontologische und stratigraphische Bedeutung der Wirbeltierfaunen des Old Reds und der marinen altpaläozoischen Schichten. Abh. Deutsch. Akad. Wiss. Berlin, Math-Nat. Kl., 1949. No. 1: 1–130.

    Google Scholar 

  • Harrison, R. G. 1895. Die Entwicklung der unpaaren und paarigen Flossen der Teleostier. Arch. Mikr. Anat., 46:500–578.

    Article  Google Scholar 

  • Harrison, R. G. 1918. Experiments on the development of the fore limb of Amblystoma, a self-differentiating equipotential system. J. Exp. Zool., 25:314–462.

    Article  Google Scholar 

  • Herrick, C. J. 1899. The cranial and first spinal nerves of Menidia: a contribution upon the nerve components of the bony fishes. J. Comp. Neurol., 9:153–455.

    Article  Google Scholar 

  • Herrick, C. J. 1903. The doctrine of nerve components and some of its applications. J. Comp. Neurol., 13:301–310.

    Article  Google Scholar 

  • Herrick, C. J. 1943. The cranial nerves. A review of 50 years. Denison Univ. Bull., J. Sci. Labs., 38:41–51.

    Google Scholar 

  • Hill, C. J. 1927. A contribution to our knowledge of the enteric plexuses. Philos. Trans. Roy. Soc. London, 215:355–388.

    Article  Google Scholar 

  • Hill, J. P., and K. M. Watson. 1958. The early development of the brain in marsupials. J. Anat., 92:493–497.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Holmdahl, D. E. 1928. Die Entstenhung und weithere Entwicklung der Neuralleiste (Ganglienleiste) bei Vogel und Saugetieren. Z. Mikr. Anat. Forsch., 14:99–298

    Google Scholar 

  • Holmdahl, D. E. 1928. Die Entstenhung und weithere Entwicklung der Neuralleiste (Ganglienleiste) bei Vogel und Saugetieren. Z. Mikr. Anat. Forsch., 15:191–203.

    Google Scholar 

  • Holmdahl, D. E. 1934. Neuralleiste und Ganglienleiste beim Menschen. Z. Mikr. Anat. Forsch., 36:137–178.

    Google Scholar 

  • Hörstadius, S. 1950. The Neural Crest. London, Oxford University Press.

    Google Scholar 

  • Hörstadius, S., and S. Sellman. 1946. Experimentale Untersuchungen über die Determination des knorpeligen Kopfskelettes bei Urodelen. Nova Acta Reg. Soc. Sci. Upsaliensis, (4)13:1–170.

    Google Scholar 

  • Hyman, L. 1955. The Invertebrates. IV. Echinodermata. The Coelomate Bilateria. New York, McGraw-Hill Book Co.

    Google Scholar 

  • Hyman, L. 1959. The invertebrates. V. Smaller Coelomate Groups. New York, McGraw-Hill Book Co.

    Google Scholar 

  • Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Sympos. Zool. Soc. London, 20:163–208.

    Google Scholar 

  • Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies 1967), primitive fossil chordates with echinoderm affinities. Bull. Brit. Mus. Nat. Hist. (Geol.), 16:241–339.

    Google Scholar 

  • Johnels, A. G. 1956. On the peripheral autonomic nervous system of the trunk region of Lampetra planeri. Acta Zool., 37:251–286.

    Article  Google Scholar 

  • Johnston, J. B. 1902. An attempt to define the primitive functional divisions of the central nervous system. J. Comp. Neurol., 12:87–106.

    Article  Google Scholar 

  • Johnston, J. B. 1905. The morphology of the vertebrate head from the viewpoint of the functional divisions of the nervous system. J. Comp. Neurol., 15:175–275.

    Google Scholar 

  • Johnston, J. B. 1906. The Nervous System of Vertebrates. Philadelphia, Blakisten.

    Google Scholar 

  • Knight-Jones, E. W. 1952. On the nervous system of Saccoglossus cambrensis (Enteropneusta). Philos. Trans. Roy. Soc. London [B], 236:315–354.

    Article  Google Scholar 

  • Komai, T. 1951. The homology of the “notochord” found in pterobranchs and enteropneusts. Amer. Natural., 85:270–276.

    Article  Google Scholar 

  • Kozlowski, R. 1947. Les affinités des graptolithes. Biol. Rev., 22:93–108.

    Article  CAS  PubMed  Google Scholar 

  • Landacre, F. L. 1921. Fate of neural crest in urodeles. J. Comp. Neurol., 33:1–44.

    Article  Google Scholar 

  • Medawar, P. B. 1951. Asymmetry of larval amphioxus. Nature (London), 167:852–853.

    Article  CAS  Google Scholar 

  • Mollier, S. 1895. Die paarigen Extremitäten der Wirbeltiere. IL Das Cheiropterygium. Anat. Hefte, 5:435–529.

    Article  Google Scholar 

  • Newell, G. E. 1952. The homology of the stomochord of the Enteropneusta. Proc. Zool. Soc. London, 121:741–746.

    Article  Google Scholar 

  • Newth, D. R. 1951. Experiments on the neural crest of the lamprey embryo. J. Exper. Biol., 28:247–260.

    Google Scholar 

  • Nicol, J. A. C. 1952. Autonomic nervous systems in lower chordates. Biol. Rev., 27:1–49.

    Article  Google Scholar 

  • Norris, H. W., and S. P. Hughes. 1920. The cranial, occipital and anterior spinal nerves of the dogfish Squalus acanthias. J. Comp. Neurol., 31:293–395.

    Article  Google Scholar 

  • Osborn, H. F. 1888. A contribution to the internal structure of the amphibian brain. J. Morph., 2:51–96.

    Article  Google Scholar 

  • Johnston, J. B. Ontogenetische Differenzirung des Ektoderms in Necturns. Arch. Mikr. Anat., 43:911–966.

    Google Scholar 

  • Johnston, J. B. 1896. Ontogenetic differentiations of the ectoderm in Necturus. II. On the development of the peripheral nervous system. Quart. J. Micr. Sci., 38:485–547.

    Google Scholar 

  • Johnston, J. B. 1897. The development of the cartilaginous skull and of the branchial and hypoglossal musculature in Necturus. Morph. Jahrb., 25:377–464.

    Google Scholar 

  • Rabl, C. 1894. Ueber die Metamerie des Wirbeltierkopfes. Verh. Anat. Ges. Jena, 6:104–135.

    Google Scholar 

  • Robertson, J. D. 1954. The chemical composition of the blood of some aquatic chordates, including members of the Tunicata, Cyclostomata and Osteichthyes. J. Exp. Biol., 31:424–442.

    CAS  Google Scholar 

  • Robertson, J. D. 1957. The habitat of the early vertebrates. Biol. Rev., 32:156–187.

    Article  Google Scholar 

  • Romer, A. S. 1933. Eurypterid influence on vertebrate history. Science, 78:114–117.

    Article  CAS  PubMed  Google Scholar 

  • Romer, A. S. 1955. Fish origins-fresh or salt water? Deep-Sea Research, Suppl. 3:261–280.

    Google Scholar 

  • Romer, A. S. 1958a. Phylogeny and behavior with special reference to vertebrate evolution. In Roe, A., and G. G. Simpson, eds., Behavior and Evolution. New Haven, Yale University Press.

    Google Scholar 

  • Romer, A. S. 1958b. The vertebrate as a dual animal-visceral and somatic. Anat. Rec, 132:496.

    Google Scholar 

  • Romer, A. S. 1959. The Vertebrate Story. Chicago, Univ. Chicago Press.

    Google Scholar 

  • Romer, A. S. 1962. The Vertebrate Body. 3 Edition. Philadelphia, W. B. Saunders Co.

    Google Scholar 

  • Romer, A. S. 1967. Major steps in vertebrate evolution. Science, 158:1629–1637.

    Article  CAS  PubMed  Google Scholar 

  • Romer, A. S. 1970. The Vertebrate Body. 4 Edition. Philadelphia, W. B. Saunders Co.

    Google Scholar 

  • Romer, A. S., and B. H. Grove. 1935. Environment of the early vertebrates. Amer. Midl. Natural., 16:805–856.

    Article  Google Scholar 

  • Scourfield, D. J. 1937. An anomalous fossil organism, possibly a new type of chordate, from the upper Silurian of Lesmahagow, Lanarkshire-Ainiktozoon loganense, gen. et sp. nov. Proc. Roy. Soc. London, [B], 121:533–547.

    Article  Google Scholar 

  • Sherrington, C. S. 1906. The Integrative Action of the Nervous System. New Haven, Yale University Press.

    Google Scholar 

  • Silén, L. 1950. On the nervous system of Glossobalanus marginatum. Acta Zool., 31:149–176.

    Article  Google Scholar 

  • Silén, L. 1954. Reflections concerning the “stomochord” of the Enteropneusta. Proc. Zool. Soc. London, 124:63–67.

    Article  Google Scholar 

  • Smith, H. W. 1932. Water regulation and its evolution in the fishes. Quart. Rev. Biol., 7:1–26.

    Article  CAS  Google Scholar 

  • Smith, H. W. 1953. From Fish to Philosopher. Boston, Little, Brown & Company.

    Google Scholar 

  • Spengel, J. W. 1946. Planctosphaera pelagica, eine in der Verwandschaftskreis der Enteropneusten gehörige Larve aus dem Tiefenplancton des Golfes von Biscaya. Rep. Scient. Res. “Michael Sars” N. Atl. Deep-Sea Exped. 1910, 5 (5).

    Google Scholar 

  • Stensiö, E. A. 1927. The Downtonian and Devonian vertebrates of Spitzbergen. Pt. 1. Family Cephalaspidae. Norske Vidensk.-Akad. Oslo, Skrifter om Svalbard og Nordishavet, No. 12:1–391.

    Google Scholar 

  • Stone, L. S. 1922. Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J. Exp. Zool., 35:421–496.

    Article  Google Scholar 

  • Stone, L. S. 1926. Further experiments on the extirpation and transplantation of mesectoderm in Amblystoma punctatum. J. Exp. Zool., 44:95–131.

    Article  Google Scholar 

  • Straus, W. L., Jr., and M. E. Rawles. 1953. An experimental study of the origin of the trunk musculature and ribs in the chick. Amer. J. Anat., 92:471–510.

    Article  PubMed  Google Scholar 

  • Strong, O. S. 1895. The cranial nerves of Amphibia. J. Morph., 10:101–230.

    Article  Google Scholar 

  • Van der Horst, J. C. 1939. Hemichordata. In Brown’s Klassen und Ordnungen des Tierreichs, 4 Bd., 4 Abt. Leipzig, Akademische Verlagsgesellschaft.

    Google Scholar 

  • Van Wijhe, J. W. 1882. Ueber die Mesoderm segmente und die Entwickelung der Nerven des Selachier Kopfes. Nat. Verh. Akad. Wet. Amsterdam, 22:1–50.

    Google Scholar 

  • Veit, O. 1919. Kopfganglienleisten bei einem menschlichen Embryo von 8 Somitenpaaren. Anat. Hefte, 56:305–320.

    Article  Google Scholar 

  • Wagner, G. 1949. Die Bedeutung der Neuralleiste für die Kopfgestaltung der Amphibienlarven. Untersuchungen an Chimaeren von Triton und Bombinator. Rev. Suisse Zool., 56:519–620.

    Article  Google Scholar 

  • Wängsjö, G. 1952. The Downtonian and Devonian vertebrates of Spitzbergen. IX. Morphologic and systematic studies of the Spitzbergen cephalaspids. Norsk. Polarinst. Skrift., No. 97:1–611.

    Google Scholar 

  • Watson, D. M. S. 1954. A consideration of ostracoderms. Philos. Trans. Roy. Soc. London, [B], 238:1–25.

    Article  Google Scholar 

  • White, E. I. 1958. Original environments of the craniates. In Westoll, T. S., ed., Studies on Fossil Vertebrates. London, The Athlone Press.

    Google Scholar 

  • Whitear, M. 1957. Some remarks on the ascidian affinities of vertebrates. Ann. Mag. Nat. Hist., (12) 10:338–348.

    Article  Google Scholar 

  • Willey, A. S. 1894. Amphioxus and the Ancestry of the Vertebrates. New York, Columbia University Press.

    Book  Google Scholar 

  • Yntema, C. L., and W. S. Hammond. 1947. The development of the autonomic nervous system. Biol. Rev., 22:344–359.

    Article  CAS  PubMed  Google Scholar 

  • Young, J. Z. 1933. The autonomic nervous system of selachians. Quart. J. Micr. Sci., 75:571–624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Meredith Corporation

About this chapter

Cite this chapter

Romer, A.S. (1972). The Vertebrate as a Dual Animal — Somatic and Visceral. In: Dobzhansky, T., Hecht, M.K., Steere, W.C. (eds) Evolutionary Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9063-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9063-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9065-7

  • Online ISBN: 978-1-4684-9063-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics