Skip to main content
Log in

FOXA2 inhibits doxorubicin-induced apoptosis via transcriptionally activating HBP rate-limiting enzyme GFPT1 in HCC cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Apoptosis plays an important role in both carcinogenesis and cancer treatment. Understanding the mechanisms through which resistance to apoptosis occurs in cancer cells has huge implications for cancer treatment. Although pieces of evidence have shown that elevated levels of global O-GlcNAcylation play an anti-apoptotic role in myriad cancers, the underlying mechanism is still ambiguous. In this study, we demonstrated that FOXA2, an essential transcription factor for liver homeostasis and hepatocellular carcinoma (HCC) development, inhibits doxorubicin (DOX)-induced apoptosis through elevating cellular O-GlcNAcylation in HCC cells. In response to DOX treatment, elevated FOXA2 and global O-GlcNAcylation level was observed in HCC cells, and higher FOXA2 levels indicated lower levels of DOX-induced apoptosis. Subsequently, we demonstrated that FOXA2 is a direct transcriptional activator of the hexosamine biosynthetic pathway (HBP) rate-limiting enzyme GFPT1. The upregulation of FOXA2 expression induced the synthesis of intracellular UDP-GlcNAc, which is the sugar substrate of O-GlcNAcylation produced by the HBP. The flux through the HBP elevated the global O-GlcNAcylation level and led to the activation of survival signaling pathways in HCC cells. Furthermore, GFPT1 was proved to be an important downstream regulator of FOXA2-mediated apoptotic suppression. These results provide insights into the molecular mechanism by which FOXA2 inhibits DOX-induced HCC cell apoptosis and suggest that targeting FOXA2 might offer a new strategy for HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH (2008) Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 14(8):828–836. https://doi.org/10.1038/nm.1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burt D, Brodbeck K, Haring HU, Schleicher ED, Weigert C (2005) Partial characterisation of the human GFAT promoter: effect of single nucleotide polymorphisms on promoter function. Biochim Biophys Acta 1740(1):85–90. https://doi.org/10.1016/j.bbadis.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  3. Butkinaree C, Park K, Hart GW (2010) O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta 1800(2):96–106. https://doi.org/10.1016/j.bbagen.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285. https://doi.org/10.2174/092986709788803312

    Article  CAS  PubMed  Google Scholar 

  5. Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S (2018) STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 117:993–1001. https://doi.org/10.1016/j.ijbiomac.2018.05.121

    Article  CAS  PubMed  Google Scholar 

  6. Hanover JA, Chen W, Bond MR (2018) O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 50(3):155–173. https://doi.org/10.1007/s10863-018-9751-2

    Article  CAS  PubMed  Google Scholar 

  7. Jindal A, Thadi A, Shailubhai K (2019) Hepatocellular carcinoma: etiology and current and future drugs. J Clin Exp Hepatol 9(2):221–232. https://doi.org/10.1016/j.jceh.2019.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee SJ, Kwon OS (2020) O-GlcNAc Transferase inhibitor synergistically enhances doxorubicin-induced apoptosis in HepG2 cells. Cancers (Basel) 12(11):3154. https://doi.org/10.3390/cancers12113154

  9. Lee CS, Friedman JR, Fulmer JT, Kaestner KH (2005) The initiation of liver development is dependent on Foxa transcription factors. Nature 435(7044):944–947. https://doi.org/10.1038/nature03649

    Article  CAS  PubMed  Google Scholar 

  10. Lencioni R, de Baere T, Burrel M, Caridi JG, Lammer J, Malagari K et al (2012) Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC Bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol 35(5):980–985. https://doi.org/10.1007/s00270-011-0287-7

    Article  PubMed  Google Scholar 

  11. Lin L, Liang H, Wang Y, Yin X, Hu Y, Huang J et al (2014) microRNA-141 inhibits cell proliferation and invasion and promotes apoptosis by targeting hepatocyte nuclear factor-3β in hepatocellular carcinoma cells. BMC Cancer 14:879. https://doi.org/10.1186/1471-2407-14-879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin J, Zhang D, Fan Y, Chao Y, Chang J, Li N et al (2018) Regulation of cancer stem cell self-renewal by HOXB9 antagonizes endoplasmic reticulum stress-induced melanoma Cell apoptosis via the miR-765-FOXA2 Axis. J Invest Dermatol 138(7):1609–1619. https://doi.org/10.1016/j.jid.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Qin Z, Cai L, Zou L, Zhao J, Zhong F (2017) Selection of internal references for qRT-PCR assays of human hepatocellular carcinoma cell lines. Biosci Rep 37(6):BSR20171281. https://doi.org/10.1042/BSR20171281

  14. Liu TW, Zandberg WF, Gloster TM, Deng L, Murray KD, Shan X et al (2018) Metabolic inhibitors of O-GlcNAc transferase that act in vivo implicate decreased O-GlcNAc levels in leptin-mediated nutrient sensing. Angew Chem Int Ed Engl 57(26):7644–7648. https://doi.org/10.1002/anie.201803254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Cao Y, Pan X, Shi M, Wu Q, Huang T et al (2018) O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death Dis 9(5):485. https://doi.org/10.1038/s41419-018-0522-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma Z, Vocadlo DJ, Vosseller K (2013) Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem 288(21):15121–15130. https://doi.org/10.1074/jbc.M113.470047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, Mclver P, Fisher R (2009) Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med 15(3-4):85–94. https://doi.org/10.2119/molmed.2008.00110

  18. Peternelj TT, Marsh SA, Strobel NA, Matsumoto A, Briskey D, Dalbo VJ et al (2015) Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle. Mol Cell Biochem 400(1–2):265–275. https://doi.org/10.1007/s11010-014-2283-0

    Article  CAS  PubMed  Google Scholar 

  19. Schug J (2008) Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi0206s21

    Article  PubMed  Google Scholar 

  20. Taylor RP, Geisler TS, Chambers JH, McClain DA (2009) Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 284(6):3425–3432. https://doi.org/10.1074/jbc.M803198200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Villanueva A (2019) Hepatocellular Carcinoma. N Engl J Med 380(15):1450–1462. https://doi.org/10.1056/NEJMra1713263

    Article  CAS  PubMed  Google Scholar 

  22. von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R et al (2013) Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17(3):436–447. https://doi.org/10.1016/j.cmet.2013.01.014

    Article  CAS  Google Scholar 

  23. Walter LA, Lin YH, Halbrook CJ, Chuh KN, He L, Pedowitz NJ et al (2020) Inhibiting the hexosamine biosynthetic pathway lowers O-GlcNAcylation levels and sensitizes cancer to environmental stress. Biochemistry 59(34):3169–3179. https://doi.org/10.1021/acs.biochem.9b00560

    Article  CAS  PubMed  Google Scholar 

  24. Wang K (2015) Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal 27(4):729–738. https://doi.org/10.1016/j.cellsig.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Brems JJ, Gamelli RL, Holterman AX (2013) Foxa2 may modulate hepatic apoptosis through the cIAP1 pathway. Cell Signal 25(4):867–874. https://doi.org/10.1016/j.cellsig.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  26. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR et al (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156(6):1179–1192. https://doi.org/10.1016/j.cell.2014.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang B, Liu G, Ding L, Zhao J, Lu Y (2018) FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer. Exp Ther Med 16(1):133–140. https://doi.org/10.3892/etm.2018.6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V et al (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28(1):316–319. https://doi.org/10.1093/nar/28.1.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 100(20):11624–11629. https://doi.org/10.1073/pnas.1931483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87. https://doi.org/10.1186/1756-9966-30-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu C, Liu GD, Feng L, Zhang CH, Wang F (2018) Identification of O-GlcNAcylation modification in diabetic retinopathy and crosstalk with phosphorylation of STAT3 in retina vascular endothelium cells. Cell Physiol Biochem 49(4):1389–1402. https://doi.org/10.1159/000493444

    Article  CAS  PubMed  Google Scholar 

  32. Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673(1–2):13–28. https://doi.org/10.1016/j.bbagen.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  33. Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279(29):30133–30142. https://doi.org/10.1074/jbc.M403773200

    Article  CAS  PubMed  Google Scholar 

  34. Zachara NE, Molina H, Wong KY, Pandey A, Hart GW (2011) The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40(3):793–808. https://doi.org/10.1007/s00726-010-0695-z

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Zhang Z, Sun J, Ma Q, Zhao W, Chen X et al (2019) MiR-942 regulates the function of breast cancer cell by targeting FOXA2. Biosci Rep 39(11):BSR20192298. https://doi.org/10.1042/BSR20192298

  36. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532. https://doi.org/10.1038/cddis.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of China (31870793, 31971214), Natural Science Foundation of Liaoning Province (2019-MS-042), and the Fundamental Research Funds for the Central Universities (DUT20YG130, DUT20YG116).

Author information

Authors and Affiliations

Authors

Contributions

Huang H conceived and designed the study. Huang H, Wang Y, Huang T, Wang L, Liu Yangzhi, Wu Q, Yu A, Shi M, and Wang X performed the experiments. Huang H and Liu Yubo wrote the paper. Li W and Zhang J reviewed and edited the manuscript. All authors read and approved the manuscript. The authors declared that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Jianing Zhang or Yubo Liu.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points FOXA2 is a direct transcriptional activator of the HBP rate-limiting enzyme GFPT1. FOXA2 promotes the synthesis of UDP-GlcNAc and thus elevates cellular O-GlcNAcylation. FOXA2 inhibits DOX-induced apoptosis by elevating O-GlcNAcylation in HCC cells.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, Y., Huang, T. et al. FOXA2 inhibits doxorubicin-induced apoptosis via transcriptionally activating HBP rate-limiting enzyme GFPT1 in HCC cells. J Physiol Biochem 77, 625–638 (2021). https://doi.org/10.1007/s13105-021-00829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00829-6

Keywords

Navigation