Skip to main content

Advertisement

Log in

Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chlorogenic acid (CGA), a phenylpropanoid derived from Eucommia ulmoides Oliver, has been shown to exhibit potent cytotoxic and anti-proliferative activities against several human cancers. However, the effects of CGA on hepatocellular carcinoma (HCC) and the underlying mechanisms have not been intensively studied. In this study, the CGA treatment effects on the viability of human hepatoma cells were investigated by MTT assay. Our data showed that CGA could dose-dependently inhibit the activity of human hepatoma cells Hep-G2 and Huh-7, but did not affect the activity and growth of normal human hepatocyte QSG-7701. The genes and pathways influenced by CGA treatment were explored by RNA sequencing and bioinformatics analysis, which identified 323 differentially expressed genes (DEGs) involved in multiple pharmacological signaling pathways such as MAPK, NF-κB, apoptosis and TGF-β signaling pathways. Further analyses by real-time quantitative PCR, Western blot and flow cytometry revealed that CGA effectually suppressed the noncanonical NF-κB signaling pathway, meanwhile it activated the mitochondrial apoptosis of HCC by upregulation of the BH3-only protein Bcl-2 binding component 3 (BBC3). Our findings demonstrated the potential of CGA in suppressing human hepatoma cells and provided a new insight into the anti-cancer mechanism of CGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391:1301–1314. https://doi.org/10.1016/s0140-6736(18)30010-2

    Article  PubMed  Google Scholar 

  3. Vibert E, Schwartz M, Olthoff KM (2020) Advances in resection and transplantation for hepatocellular carcinoma. J Hepatol 72:262–276. https://doi.org/10.1016/j.jhep.2019.11.017

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390. https://doi.org/10.1056/NEJMoa0708857

    Article  CAS  PubMed  Google Scholar 

  5. Spallanzani A, Orsi G, Andrikou K, Gelsomino F, Rimini M, Riggi L, Cascinu S (2018) Lenvatinib as a therapy for unresectable hepatocellular carcinoma. Expert Rev Anticancer Ther 18:1069–1076. https://doi.org/10.1080/14737140.2018.1524297

    Article  CAS  PubMed  Google Scholar 

  6. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Cheng AL, Llovet JM, Finn RS, LeBerre MA, Baumhauer A, Meinhardt G, Han G (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66. https://doi.org/10.1016/s0140-6736(16)32453-9

    Article  CAS  PubMed  Google Scholar 

  7. Yang PM, Lin LS, Liu TP (2020) Sorafenib inhibits ribonucleotide reductase regulatory subunit M2 (RRM2) in hepatocellular carcinoma cells. Biomolecules. https://doi.org/10.3390/biom10010117

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Chen H, Li H, Tang Y, Yang L, Cao S, Qin D (2016) Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides Oliver Bark with neuron protection and promotion of serotonin release through enhancing Synapsin I expression. Molecules 21:260. https://doi.org/10.3390/molecules21030260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao X, Gongyu G, Chen G (2006) Determination of active constituents in Lonicera confusa DC. by capillary electrophoresis with amperometric detection. Biomed Chromatogr 20:1192–1199. https://doi.org/10.1002/bmc.684

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Lan MS (2010) Studies on the chemical constituents of Teyou 2 Folium Mori. J Chin Med Mater 33:380–382

    Google Scholar 

  11. Meinhart AD, Damin FM, Caldeirão L, da Silveira TFF, Filho JT, Godoy HT (2017) Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res Int 99:522–530. https://doi.org/10.1016/j.foodres.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Kusama K, Satoh K, Takayama E, Watanabe S, Sakagami H (2000) Induction of cytotoxicity by chlorogenic acid in human oral tumor cell lines. Phytomedicine 7:483–491. https://doi.org/10.1016/s0944-7113(00)80034-3

    Article  CAS  PubMed  Google Scholar 

  13. Yagasaki K, Miura Y, Okauchi R, Furuse T (2000) Inhibitory effects of chlorogenic acid and its related compounds on the invasion of hepatoma cells in culture. Cytotechnology 33:229–235. https://doi.org/10.1023/a:1008141918852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yun N, Kang JW, Lee SM (2012) Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem 23:1249–1255. https://doi.org/10.1016/j.jnutbio.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  15. Santana-Galvez J, Cisneros-Zevallos L, Jacobo-Velazquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. https://doi.org/10.3390/molecules22030358

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gong XX, Su XS, Zhan K, Zhao GQ (2018) The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J Dairy Sci 101:10089–10097. https://doi.org/10.3168/jds.2017-14328

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Xie H, Chen D, Yu B, Mao X, Zheng P, Yu J, Luo Y, Luo J, He J (2018) Chlorogenic acid improves intestinal development via suppressing mucosa inflammation and cell apoptosis in weaned pigs. ACS Omega 3:2211–2219. https://doi.org/10.1021/acsomega.7b01971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang TY, Yang HR, Zhang J, Li D, Lin J, Wang L, Xu X (2013) The studies of chlorogenic acid antitumor mechanism by gene chip detection: the immune pathway gene expression. J Anal Methods Chem 2013:617243. https://doi.org/10.1155/2013/617243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, WenHua L, XiaoHui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  20. Sadeghi Ekbatan S, Iskandar MM, Sleno L, Sabally K, Khairallah J, Prakash S, Kubow S (2018) Absorption and metabolism of phenolics from digests of polyphenol-rich potato extracts using the Caco-2/HepG2 co-culture system. Foods. https://doi.org/10.3390/foods7010008

  21. Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138:2309–2315. https://doi.org/10.3945/jn.108.095554

    Article  CAS  PubMed  Google Scholar 

  22. Refolo MG, Lippolis C, Carella N, Cavallini A, Messa C, D’Alessandro R (2018) Chlorogenic acid improves the regorafenib effects in human hepatocellular carcinoma cells. Int J Mol Sci. https://doi.org/10.3390/ijms19051518

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deka SJ, Gorai S, Manna D, Trivedi V (2017) Evidence of PKC binding and translocation to explain the anticancer mechanism of chlorogenic acid in breast cancer cells. Curr Mol Med 17:79–89. https://doi.org/10.2174/1566524017666170209160619

    Article  CAS  PubMed  Google Scholar 

  24. Belkaid A, Currie JC, Desgagnés J, Annabi B (2006) The chemopreventive properties of chlorogenic acid reveal a potential new role for the microsomal glucose-6-phosphate translocase in brain tumor progression. Cancer Cell Int 6:7. https://doi.org/10.1186/1475-2867-6-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bandyopadhyay G, Biswas T, Roy KC, Mandal S, Mandal C, Pal BC, Bhattacharya S, Rakshit S, Bhattacharya DK, Chaudhuri U, Konar A, Bandyopadhyay S (2004) Chlorogenic acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mitogen-activated protein kinase-dependent apoptosis in chronic myelogenous leukemic cells. Blood 104:2514–2522. https://doi.org/10.1182/blood-2003-11-4065

    Article  CAS  PubMed  Google Scholar 

  26. Huang MT, Smart RC, Wong CQ, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48:5941–5946

    CAS  PubMed  Google Scholar 

  27. Yamagata K, Izawa Y, Onodera D, Tagami M (2018) Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 441:9–19. https://doi.org/10.1007/s11010-017-3171-1

    Article  CAS  PubMed  Google Scholar 

  28. Tian L, Su CP, Wang Q, Wu FJ, Bai R, Zhang HM, Liu JY, Lu WJ, Wang W, Lan F, Guo SZ (2019) Chlorogenic acid: a potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 23:4666–4678. https://doi.org/10.1111/jcmm.14351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M (2005) Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280:27888–27895. https://doi.org/10.1074/jbc.M503347200

    Article  CAS  PubMed  Google Scholar 

  30. Park JJ, Hwang SJ, Park JH, Lee HJ (2015) Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway. Cell Oncol (Dordr) 38:111–118. https://doi.org/10.1007/s13402-014-0216-2

    Article  CAS  Google Scholar 

  31. Yan Y, Li J, Han J, Hou N, Song Y, Dong L (2015) Chlorogenic acid enhances the effects of 5-fluorouracil in human hepatocellular carcinoma cells through the inhibition of extracellular signal-regulated kinases. Anticancer Drugs 26:540–546. https://doi.org/10.1097/cad.0000000000000218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan Y, Liu N, Hou N, Dong L, Li J (2017) Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J Nutr Biochem 46:68–73. https://doi.org/10.1016/j.jnutbio.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  33. Burgos-Morón E, Calderón-Montaño JM, Orta ML, Pastor N, Pérez-Guerrero C, Austin C, Mateos S, López-Lázaro M (2012) The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells. J Agric Food Chem 60:7384–7391. https://doi.org/10.1021/jf300999e

    Article  CAS  PubMed  Google Scholar 

  34. Xue N, Zhou Q, Ji M, Jin J, Lai F, Chen J, Zhang M, Jia J, Yang H, Zhang J, Li W, Jiang J, Chen X (2017) Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep 7:39011. https://doi.org/10.1038/srep39011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang S, Wang LL, Xue NN, Li C, Guo HH, Ren TK, Zhan Y, Li WB, Zhang J, Chen XG, Han YX, Zhang JL, Jiang JD (2019) Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 9:6745–6763. https://doi.org/10.7150/thno.34674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zamzami N, Kroemer G (2003) Apoptosis: mitochondrial membrane permeabilization—the (w)hole story? Curr Biol 13:R71–R73. https://doi.org/10.1016/s0960-9822(02)01433-1

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Du H, Chen P (2020) Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother 131:110673. https://doi.org/10.1016/j.biopha.2020.110673

    Article  CAS  PubMed  Google Scholar 

  39. Yang JS, Liu CW, Ma YS, Weng SW, Tang NY, Wu SH, Ji BC, Ma CY, Ko YC, Funayama S, Kuo CL (2012) Chlorogenic acid induces apoptotic cell death in U937 leukemia cells through caspase- and mitochondria-dependent pathways. In Vivo 26:971–978

    CAS  PubMed  Google Scholar 

  40. Rakshit S, Mandal L, Pal BC, Bagchi J, Biswas N, Chaudhuri J, Chowdhury AA, Manna A, Chaudhuri U, Konar A, Mukherjee T, Jaisankar P, Bandyopadhyay S (2010) Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl+ CML cells. Biochem Pharmacol 80:1662–1675. https://doi.org/10.1016/j.bcp.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  41. Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21:71–85. https://doi.org/10.1038/cr.2010.177

    Article  CAS  PubMed  Google Scholar 

  42. Jiang X, Li C, Lin B, Hong H, Jiang L, Zhu S, Wang X, Tang N, Li X, She F, Chen Y (2017) cIAP2 promotes gallbladder cancer invasion and lymphangiogenesis by activating the NF-kappaB pathway. Cancer Sci 108:1144–1156. https://doi.org/10.1111/cas.13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lau R, Niu MY, Pratt MA (2012) cIAP2 represses IKKalpha/beta-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle 11:4009–4019. https://doi.org/10.4161/cc.22223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gressot LV, Doucette T, Yang Y, Fuller GN, Manyam G, Rao A, Latha K, Rao G (2017) Analysis of the inhibitors of apoptosis identifies BIRC3 as a facilitator of malignant progression in glioma. Oncotarget 8:12695–12704. https://doi.org/10.18632/oncotarget.8657

    Article  PubMed  Google Scholar 

  45. Moron-Calvente V, Romero-Pinedo S, Toribio-Castello S, Plaza-Diaz J, Abadia-Molina AC, Rojas-Barros DI, Beug ST, LaCasse EC, MacKenzie A, Korneluk R, Abadia-Molina F (2018) Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization. PLoS One 13:e0193643. https://doi.org/10.1371/journal.pone.0193643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683. https://doi.org/10.1126/science.281.5383.1680

    Article  CAS  PubMed  Google Scholar 

  47. Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ, Zhu L, Chittenden T (2001) Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98:11318–11323. https://doi.org/10.1073/pnas.201208798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei JS, Whiteford CC, Cenacchi N, Son CG, Khan J (2005) BBC3 mediates fenretinide-induced cell death in neuroblastoma. Oncogene 24:7976–7983. https://doi.org/10.1038/sj.onc.1208947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh N, Sarkar J, Sashidhara KV, Ali S, Sinha S (2014) Anti-tumour activity of a novel coumarin–chalcone hybrid is mediated through intrinsic apoptotic pathway by inducing PUMA and altering Bax/Bcl-2 ratio. Apoptosis 19:1017–1028. https://doi.org/10.1007/s10495-014-0975-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Teaching and Research Core Facility at College of Life Sciences, NWAFU, for their support in this work.

Funding

This work is supported by 13th Five Year National Key Research and Development Program of China (2017YFD0600702).

Author information

Authors and Affiliations

Authors

Contributions

HC and JD conceived and designed this research. YJ, HN and NS performed the experiments. YJ, HC and WH analyzed the data. HC, YJ and JD wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Juane Dong or Hongying Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Nan, H., Shi, N. et al. Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol Biol Rep 48, 2351–2364 (2021). https://doi.org/10.1007/s11033-021-06267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06267-3

Keywords

Navigation