Skip to main content

Advertisement

Log in

O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key ‘hallmarks of cancer’. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb’s cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a ‘vicious cycle’. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Diagrammatic representation of the Pasteur, Crabtree, and Warburg effects in response to O 2 levels, glucose, and the tumor microenvironment
Fig. 2: The enzymes of O- GlcNAc cycling (OGT and OGA) and their regulation
Fig. 3: Mutations in OGT (A) and OGA (B) in various cancer subtypes
Fig. 4: Incidence and Coincidence of Mutations in OGT and OGA in the tumor types
Fig. 5: Expression levels of OGT and OGA in various human tumor types
Fig. 6: The role of hexosamine synthesis and O -GlcNAc in reprogramming cancer metabolism
Fig. 7: Oncometabolism fuels an escalating O-GlcNAcylation of oncogenes tumor suppressors and regulatory nodes in tumor metabolism, thus generating a vicious cycle

Similar content being viewed by others

References

  • Akan I, Love DC, Harwood KR, Bond MR, Hanover JA (2016) Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation. J Biol Chem 291:9906–9919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvanitis DL, Arvanitis LD, Panourias IG, Kitsoulis P, Kanavaros P (2005) Mitochondria-rich normal, metaplastic, and neoplastic cells show overexpression of the epitope H recognized by the monoclonal antibody H. Pathol Res Pract 201:319–324

    Article  CAS  PubMed  Google Scholar 

  • Arvanitis LD, Vassiou K, Kotrotsios A, Sgantzos MN (2011) Hypoxia upregulates the expression of the O-linked N-acetylglucosamine containing epitope H in human ependymal cells. Pathol Res Pract 207:91–96

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, de Bari L, Bobba A, Amadoro G (2017) A disease with a sweet tooth: exploring the Warburg effect in Alzheimer’s disease. Biogerontology 18:301–319

    Article  CAS  PubMed  Google Scholar 

  • Baldini SF, Steenackers A, Olivier-Van Stichelen S, Mir AM, Mortuaire M, Lefebvre T, Guinez C (2016) Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation. Biochem Biophys Res Commun 478:942–948

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Sangwan V, McGinn O, Chugh R, Dudeja V, Vickers SM, Saluja AK (2013) Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J Biol Chem 288:33927–33938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci U S A 112:6050–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer C, Göbel K, Nagaraj N, Colantuoni C, Wang M, Müller U, Kremmer E, Rottach A, Leonhardt H (2015) Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J Biol Chem 290:4801–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bektas M, Rubenstein DS (2011) The role of intracellular protein O-glycosylation in cell adhesion and disease. J Biomed Res 25:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW (2000) Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 19:5092–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond MR, Hanover JA (2013) O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr 33:205–229

    Article  CAS  PubMed  Google Scholar 

  • Bond MR, Hanover JA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 208:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burén S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS, Perez M, Rodriguez-Justo M, Campos-Olivas R, Megías D, Djouder N (2016) Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms. Cancer Cell 30:290–307

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29:2831–2842

    Article  CAS  PubMed  Google Scholar 

  • Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB (2017) Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 247:481–491

    Article  CAS  PubMed  Google Scholar 

  • Chaiyawat P, Netsirisawan P, Svasti J, Champattanachai V (2014) Aberrant O-GlcNAcylated Proteins: New Perspectives in Breast and Colorectal Cancer. Front Endocrinol (Lausanne) 5:193

    Google Scholar 

  • Chaiyawat P, Chokchaichamnankit D, Lirdprapamongkol K, Srisomsap C, Svasti J, Champattanachai V (2015) Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Oncol Rep 34:1933–1942

    Article  CAS  PubMed  Google Scholar 

  • Chaiyawat P, Weeraphan C, Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V (2016) Elevated O-GlcNAcylation of Extracellular Vesicle Proteins Derived from Metastatic Colorectal Cancer Cells. Cancer Genomics Proteomics 13:387–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J (2013) Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 13:2088–2099

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chan DC (2017) Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells. Cell Metab 26:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yu X (2016) OGT restrains the expansion of DNA damage signaling. Nucleic Acids Res 44:9266–9278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu X, Lü F, Liu X, Ru Y, Ren Y, Yao L, Zhang Y (2015) Transcription factor Nrf1 is negatively regulated by its O-GlcNAcylation status. FEBS Lett 589:2347–2358

    Article  CAS  PubMed  Google Scholar 

  • Chen PH, Smith TJ, Wu J, Siesser PF, Bisnett BJ, Khan F, Hogue M, Soderblom E, Tang F, Marks JR, Major MB, Swarts BM, Boyce M, Chi JT (2017) Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. EMBO J 36:2233–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TY, Hart GW (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. Adv Exp Med Biol 491:413–418

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Hart GW, Dang CV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 270:18961–18965

    Article  CAS  PubMed  Google Scholar 

  • Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A 111:1355–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130:11576–11577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC (2015) Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 42:841–851

    Article  CAS  PubMed  Google Scholar 

  • Crabtree HG (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22:1289–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Olio F, Trinchera M (2017) Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 18:998

    Article  PubMed Central  Google Scholar 

  • Dauphinee SM, Ma M, Too CK (2005) Role of O-linked beta-N-acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells. J Cell Biochem 96:579–588

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz RM, Carvalho E, Dias W (2014) O-GlcNAcylation: The Sweet Side of the Cancer. Front Oncol 4:132

    Article  PubMed  PubMed Central  Google Scholar 

  • de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C (2016) Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells. J Biol Chem 291:18897–18914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deen AJ, Arasu UT, Pasonen-Seppänen S, Hassinen A, Takabe P, Wojciechowski S, Kärnä R, Rilla K, Kellokumpu S, Tammi R, Tammi M, Oikari S (2016) UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell Mol Life Sci 73:3183–3204

    Article  CAS  PubMed  Google Scholar 

  • Dehennaut V, Leprince D, Lefebvre T (2014) O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne) 5:155

    Google Scholar 

  • Dell’ Antone P (2012) Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects. Med Hypotheses 79:388–392

    Article  CAS  PubMed  Google Scholar 

  • Dennis JW, Lau KS, Demetriou M, Nabi IR (2009) Adaptive regulation at the cell surface by N-glycosylation. Traffic 10:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devic S (2016) Warburg Effect - a Consequence or the Cause of Carcinogenesis. J Cancer 7:817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CC, Hou F, Zhang Y (2015) Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS One 10:e0145023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donadio AC, Lobo C, Tosina M, de la Rosa V, Martín-Rufián M, Campos-Sandoval JA, Matés JM, Márquez J, Alonso FJ, Segura JA (2008) Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103:800–811

    Article  CAS  PubMed  Google Scholar 

  • Efimova EV, Takahashi S, Shamsi NA, Wu D, Labay E, Ulanovskaya OA, Weichselbaum RR, Kozmin SA, Kron SJ (2016) Linking Cancer Metabolism to DNA Repair and Accelerated Senescence. Mol Cancer Res 14:173–184

    Article  CAS  PubMed  Google Scholar 

  • Fardini Y, Perez-Cervera Y, Camoin L, Pagesy P, Lefebvre T, Issad T (2015) Regulatory O-GlcNAcylation sites on FoxO1 are yet to be identified. Biochem Biophys Res Commun 462:151–158

    Article  CAS  PubMed  Google Scholar 

  • Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, Vocadlo DJ, Seagroves TN, Reginato MJ (2014) O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 54:820–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer CM, Lu TY, Bacigalupa ZA, Katsetos CD, Sinclair DA, Reginato MJ (2017) O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene 36:559–569

    Article  CAS  PubMed  Google Scholar 

  • Fletcher BS, Dragstedt C, Notterpek L, Nolan GP (2002) Functional cloning of SPIN-2, a nuclear anti-apoptotic protein with roles in cell cycle progression. Leukemia 16:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Fukushige T, Smith HE, Miwa J, Krause MW, Hanover JA (2017) A Genetic Analysis of the Caenorhabditis elegans Detoxification Response. Genetics 206:939–952

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246:280–289

    Article  CAS  PubMed  Google Scholar 

  • Gawlowski T, Suarez J, Scott B, Torres-Gonzalez M, Wang H, Schwappacher R, Han X, Yates JR, Hoshijima M, Dillmann W (2012) Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem 287:30024–30034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge X, Kwok PY, Shieh JT (2015) Prioritizing genes for X-linked diseases using population exome data. Hum Mol Genet 24:599–608

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SK, Bond MR, Love DC, Ashwell GG, Krause MW, Hanover JA (2014) Disruption of O-GlcNAc Cycling in C. elegans Perturbs Nucleotide Sugar Pools and Complex Glycans. Front Endocrinol (Lausanne) 5:197

    Google Scholar 

  • Guppy M, Greiner E, Brand K (1993) The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212:95–99

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Philipsberg GA (1997) Mitotic arrest with nocodazole induces selective changes in the level of O-linked N-acetylglucosamine and accumulation of incompletely processed N-glycans on proteins from HT29 cells. J Biol Chem 272:8752–8758

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Grove K, Philipsberg GA (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem 273:3611–3617

    Article  CAS  PubMed  Google Scholar 

  • Hammad N, Rosas-Lemus M, Uribe-Carvajal S, Rigoulet M, Devin A (2016) The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction. Biochim Biophys Acta 1857:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J 15:1865–1876

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409:287–297

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, Krause M (2005) A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci U S A 102:11266–11271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanover JA, Krause MW, Love DC (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta 1800:80–95

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13:312–321

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2014) AMPK--sensing energy while talking to other signaling pathways. Cell Metab 20:939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart GW (2014a) Three Decades of Research on O-GlcNAcylation - A Major Nutrient Sensor That Regulates Signaling, Transcription and Cellular Metabolism. Front Endocrinol (Lausanne) 5:183

    Google Scholar 

  • Hart GW (2014b) Minireview series on the thirtieth anniversary of research on O-GlcNAcylation of nuclear and cytoplasmic proteins: Nutrient regulation of cellular metabolism and physiology by O-GlcNAcylation. J Biol Chem 289:34422–34423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwood KR, Hanover JA (2014) Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci 127:1857–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaki S, Voloudakis-Baltatzis I, Goutas N, Arvanitis LD, Vassilaros SD, Arvanitis DL, Kittas C, Marinos E (2006) Nuclear localization of cytokeratin 8 and the O-linked N-acetylglucosamine-containing epitope H in epithelial cells of infiltrating ductal breast carcinomas: a combination of immunogold and EDTA regressive staining methods. Ultrastruct Pathol 30:177–186

    Article  PubMed  Google Scholar 

  • Hazari YM, Bashir A, Haq EU, Fazili KM (2016) Emerging tale of UPR and cancer: an essentiality for malignancy. Tumour Biol 37:14381–14390

    Article  CAS  PubMed  Google Scholar 

  • Howerton CL, Morgan CP, Fischer DB, Bale TL (2013) O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A 110:5169–5174

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV (2015) MYC and metabolism on the path to cancer. Semin Cell Dev Biol 43:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem 284:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Pan Q, Sun D, Chen W, Shen A, Huang M, Ding J, Geng M (2013) O-GlcNAcylation of cofilin promotes breast cancer cell invasion. J Biol Chem 288:36418–36425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issad T, Pagesy P (2014) Protein O-GlcNAcylation and regulation of cell signalling: involvement in pathophysiology. Biol Aujourdhui 208:109–117

    Article  PubMed  Google Scholar 

  • Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T, Mills IG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res 73:5277–5287

    Article  CAS  PubMed  Google Scholar 

  • Jang TJ, Kim UJ (2016) O-GlcNAcylation is associated with the development and progression of gastric carcinoma. Pathol Res Pract 212:622–630

    Article  CAS  PubMed  Google Scholar 

  • Jeoung NH, Harris CR, Harris RA (2014) Regulation of pyruvate metabolism in metabolic-related diseases. Rev Endocr Metab Disord 15:99–110

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Gao Y, Hou W, Tian F, Ying W, Li L, Bai B, Hou G, Wang PG, Zhang L (2016) Proteomic analysis of O-GlcNAcylated proteins in invasive ductal breast carcinomas with and without lymph node metastasis. Amino Acids 48:365–374

    Article  CAS  PubMed  Google Scholar 

  • Jin FZ, Yu C, Zhao DZ, Wu MJ, Yang Z (2013) A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells. Exp Cell Res 319:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonckheere AI, Smeitink JA, Rodenburg RJ (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225

    Article  CAS  PubMed  Google Scholar 

  • Jones DR, Keune WJ, Anderson KE, Stephens LR, Hawkins PT, Divecha N (2014) The hexosamine biosynthesis pathway and O-GlcNAcylation maintain insulin-stimulated PI3K-PKB phosphorylation and tumour cell growth after short-term glucose deprivation. FEBS J 281:3591–3608

    Article  CAS  PubMed  Google Scholar 

  • Kakade PS, Budnar S, Kalraiya RD, Vaidya MM (2016) Functional Implications of O-GlcNAcylation-dependent Phosphorylation at a Proximal Site on Keratin 18. J Biol Chem 291:12003–12013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang ES, Han D, Park J, Kwak TK, Oh MA, Lee SA, Choi S, Park ZY, Kim Y, Lee JW (2008) O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res 314:2238–2248

    Article  CAS  PubMed  Google Scholar 

  • Kang JG, Park SY, Ji S, Jang I, Park S, Kim HS, Kim SM, Yook JI, Park YI, Roth J, Cho JW (2009) O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation. J Biol Chem 284:34777–34784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang KA, Piao MJ, Ryu YS, Kang HK, Chang WY, Keum YS, Hyun JW (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget 7:40594–40620

    PubMed  PubMed Central  Google Scholar 

  • Kankova K, Hrstka R (2012) Cancer as a metabolic disease and diabetes as a cancer risk, Klin Onkol 25 Suppl 2: 2S26-31

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10:611–618

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi K, Araki K, Tobiume K, Tanaka N (2009) Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci U S A 106:3431–3436

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Bond MR, Love DC, Hanover JA (2014) Chemical tools to explore nutrient-driven O-GlcNAc cycling. Crit Rev Biochem Mol Biol 49:327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Kim YS, Kim H, Kang MY, Park J, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Park JK, Cho JW, Shin JK, Choi WS (2016) O-linked N-acetylglucosamine transferase promotes cervical cancer tumorigenesis through human papillomaviruses E6 and E7 oncogenes. Oncotarget 7:44596–44607

    PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kim YS, Choi MY, Kim M, Yang JH, Park HO, Jang IS, Moon SH, Kim HO, Song DH, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Choi JY, Choi WS (2017) O-linked-N-acetylglucosamine transferase is associated with metastatic spread of human papillomavirus E6 and E7 oncoproteins to the lungs of mice. Biochem Biophys Res Commun 483:793–802

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld S, Kornfeld R, Neufeld EF, O’brien PJ (1964) The feedback control of sugar nucleotide biosynthesis in liver. Proc Natl Acad Sci U S A 52:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzeslak A, Pomorski L, Lipinska A (2010) Elevation of nucleocytoplasmic beta-N-acetylglucosaminidase (O-GlcNAcase) activity in thyroid cancers. Int J Mol Med 25:643–648

    Article  CAS  PubMed  Google Scholar 

  • Krześlak A, Jóźwiak P, Lipińska A (2011) Down-regulation of β-N-acetyl-D-glucosaminidase increases Akt1 activity in thyroid anaplastic cancer cells. Oncol Rep 26:743–749

    PubMed  Google Scholar 

  • Krześlak A, Wójcik-Krowiranda K, Forma E, Bieńkiewicz A, Bryś M (2012) Expression of genes encoding for enzymes associated with O-GlcNAcylation in endometrial carcinomas: clinicopathologic correlations. Ginekol Pol 83:22–26

    PubMed  Google Scholar 

  • Kwei KA, Baker JB, Pelham RJ (2012) Modulators of sensitivity and resistance to inhibition of PI3K identified in a pharmacogenomic screen of the NCI-60 human tumor cell line collection. PLoS One 7:e46518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus BD, Love DC, Hanover JA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 16:415–421

    Article  CAS  PubMed  Google Scholar 

  • Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469:564–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Kim D (2016) Cancer Metabolism: Fueling More than Just Growth. Mol Cell 39:847–854

    Article  CAS  Google Scholar 

  • Lefebvre T, Pinte S, Guérardel C, Deltour S, Martin-Soudant N, Slomianny MC, Michalski JC, Leprince D (2004) The tumor suppressor HIC1 (hypermethylated in cancer 1) is O-GlcNAc glycosylated. Eur J Biochem 271:3843–3854

    Article  CAS  PubMed  Google Scholar 

  • Lewis BA, Hanover JA (2014) O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 289:34440–34448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Liu X, Wang D, Su L, Zhao T, Li Z, Lin C, Zhang Y, Huang B, Lu J, Li X (2017) O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans. Sci Rep 7:43601

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg Effect: How Does it Benefit Cancer Cells. Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Tao T, Liu F, Ni R, Lu C, Shen A (2016) Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma. Exp Cell Res 349:230–238

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang H, Cao Y, Wu Q, Li W, Zhang J (2017a) Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. Biochem Biophys Res Commun 487:755–762

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huang H, Liu M, Wu Q, Li W, Zhang J (2017b) MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase. Biomed Pharmacother 91:731–738

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA, Kochran J (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116:647–654

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Ghosh S, Mondoux MA, Fukushige T, Wang P, Wilson MA, Iser WB, Wolkow CA, Krause MW, Hanover JA (2010a) Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc Natl Acad Sci U S A 107:7413–7418

    Article  PubMed  PubMed Central  Google Scholar 

  • Love DC, Krause MW, Hanover JA (2010b) O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 21:646–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Fan D, Hu CW, Worth M, Ma ZX, Jiang J (2016) Distributive O-GlcNAcylation on the Highly Repetitive C-Terminal Domain of RNA Polymerase II. Biochemistry 55:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Lucena MC, Carvalho-Cruz P, Donadio JL, Oliveira IA, de Queiroz RM, Marinho-Carvalho MM, Sola-Penna M, de Paula IF, Gondim KC, McComb ME, Costello CE, Whelan SA, Todeschini AR, Dias WB (2016) Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation. J Biol Chem 291:12917–12929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Vocadlo DJ, Vosseller K (2013) Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-κB activity in pancreatic cancer cells. J Biol Chem 288:15121–15130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar G, Harmon A, Candelaria R, Martinez-Hernandez A, Raghow R, Solomon SS (2003) O-glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon. Am J Physiol Endocrinol Metab 285:E584–E591

    Article  CAS  PubMed  Google Scholar 

  • Majumdar G, Wright J, Markowitz P, Martinez-Hernandez A, Raghow R, Solomon SS (2004) Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1. Diabetes 53:3184–3192

    Article  CAS  PubMed  Google Scholar 

  • Maynard JC, Burlingame AL, Medzihradszky KF (2016) Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A New Post-translational Modification in Mammals. Mol Cell Proteomics 15:3405–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, Yu W (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 1812:514–519

    Article  CAS  PubMed  Google Scholar 

  • Mitchell MI, Engelbrecht AM (2017) Metabolic hijacking: A survival strategy cancer cells exploit. Crit Rev Oncol Hematol 109:1–8

    Article  PubMed  Google Scholar 

  • Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28:2485–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V (2015) Proteomic Analysis Reveals Aberrant O-GlcNAcylation of Extracellular Proteins from Breast Cancer Cell Secretion. Cancer Genomics Proteomics 12:201–209

    CAS  PubMed  Google Scholar 

  • Neubert P, Halim A, Zauser M, Essig A, Joshi HJ, Zatorska E, Larsen IS, Loibl M, Castells-Ballester J, Aebi M, Clausen H, Strahl S (2016) Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae. Mol Cell Proteomics 15:1323–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Xia Y, Wang J, Shi X (2017) O-GlcNAcylation promotes migration and invasion in human ovarian cancer cells via the RhoA/ROCK/MLC pathway. Mol Med Rep 15:2083–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noach N, Segev Y, Levi I, Segal S, Priel E (2007) Modification of topoisomerase I activity by glucose and by O-GlcNAcylation of the enzyme protein. Glycobiology 17:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Nugent BM, Bale TL (2015) The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol 39:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi N, Morino K, Ida S, Sekine O, Lemecha M, Kume S, Park SY, Choi CS, Ugi S, Maegawa H (2017) Pivotal Role of O-GlcNAc Modification in Cold-Induced Thermogenesis by Brown Adipose Tissue Through Mitochondrial Biogenesis. Diabetes 66:2351–2362

    Article  CAS  PubMed  Google Scholar 

  • Oikari S, Makkonen K, Deen AJ, Tyni I, Kärnä R, Tammi RH, Tammi MI (2016) Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis. Glycobiology 26:710–722

    Article  CAS  PubMed  Google Scholar 

  • Olivier-Van Stichelen S, Hanover JA (2015) You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr Opin Clin Nutr Metab Care 18:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier-Van Stichelen S, Abramowitz LK, Hanover JA (2014a) X marks the spot: does it matter that O-GlcNAc transferase is an X-linked gene. Biochem Biophys Res Commun 453:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC, Boureme D, Loyaux D, Ferrara P, Lefebvre T (2014b) O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. FASEB J 28:3325–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palorini R, Cammarata FP, Cammarata F, Balestrieri C, Monestiroli A, Vasso M, Gelfi C, Alberghina L, Chiaradonna F (2013) Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 4:e732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SK, Zhou X, Pendleton KE, Hunter OV, Kohler JJ, O’Donnell KA, Conrad NK (2017) A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 20:1088–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlova NN, Thompson CB (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekkurnaz G, Trinidad JC, Wang X, Kong D, Schwarz TL (2014) Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158:54–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepe F, Pagotto S, Soliman S, Rossi C, Lanuti P, Braconi C, Mariani-Costantini R, Visone R, Veronese A (2017) Regulation of miR-483-3p by the O-linked N-acetylglucosamine transferase links chemosensitivity to glucose metabolism in liver cancer cells. Oncogene 6:e328

    Article  CAS  Google Scholar 

  • Phoomak C, Vaeteewoottacharn K, Silsirivanit A, Saengboonmee C, Seubwai W, Sawanyawisuth K, Wongkham C, Wongkham S (2017) High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci Rep 7:43842

    Article  PubMed  PubMed Central  Google Scholar 

  • Phueaouan T, Chaiyawat P, Netsirisawan P, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J, Champattanachai V (2013) Aberrant O-GlcNAc-modified proteins expressed in primary colorectal cancer. Oncol Rep 30:2929–2936

    Article  CAS  PubMed  Google Scholar 

  • Ruan HB, Singh JP, Li MD, Wu J, Yang X (2013) Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 24:301–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM (2017) Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells. J Biol Chem 292:4499–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed MT, Ahmad J, Kanwal S, Holowatyj AN, Sheikh IA, Zafar Paracha R, Shafi A, Siddiqa A, Bibi Z, Khan M, Ali A (2016) Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression. Peer J 4:e2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer 114:1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimpl M, Zheng X, Borodkin VS, Blair DE, Ferenbach AT, Schüttelkopf AW, Navratilova I, Aristotelous T, Albarbarawi O, Robinson DA, Macnaughtan MA, van Aalten DM (2012) O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat Chem Biol 8:969–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvan N, Williamson R, Mariappa D, Campbell DG, Gourlay R, Ferenbach AT, Aristotelous T, Hopkins-Navratilova I, Trost M, van Aalten DMF (2017) A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat Chem Biol 13:882–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgantzos MN, Galani V, Arvanitis LD, Charchanti A, Psathas P, Nakou M, Havaki S, Kallioras V, Marinos E, Vamvakopoulos NC, Kittas C (2007) Expression of the O-linked N-acetylglucosamine containing epitope H in normal myometrium and uterine smooth muscle cell tumors. Pathol Res Pract 203:31–37

    Article  CAS  PubMed  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A 97:5735–5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R, Dennis JW, Williams R, Gross BJ, Walker S, Zuccolo J, Deans JP, Hart GW, Spaner DE (2010) Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24:1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SH, Love DC, Hanover JA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids 40:885–893

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Syrzycka M, Macauley MS, Rastgardani T, Komljenovic I, Vocadlo DJ, Brock HW, Honda BM (2009) Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A 106:13427–13432

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh JP, Zhang K, Wu J, Yang X (2015) O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 356:244–250

    Article  CAS  PubMed  Google Scholar 

  • Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer. Trends Biochem Sci 35:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN, Reginato MJ (2015) mTOR/MYC Axis Regulates O-GlcNAc Transferase Expression and O-GlcNAcylation in Breast Cancer. Mol Cancer Res 13:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W (2014) The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28:485–496

    Article  CAS  PubMed  Google Scholar 

  • Srikanth B, Vaidya MM, Kalraiya RD (2010) O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18. J Biol Chem 285:34062–34071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi K, Yamamoto M (2017) The KEAP1-NRF2 System in Cancer. Front Oncol 7:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan EP, Villar MT, E L LJ, Selfridge JE, Artigues A, Swerdlow RH, Slawson C (2014) Altering O-linked β-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 289:14719–14730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taparra K, Tran PT, Zachara NE (2016) Hijacking the Hexosamine Biosynthetic Pathway to Promote EMT-Mediated Neoplastic Phenotypes. Front Oncol 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas TM, Yu JS (2017) Metabolic regulation of glioma stem-like cells in the tumor micro-environment., Cancer Lett

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    CAS  PubMed  Google Scholar 

  • Trapannone R, Mariappa D, Ferenbach AT, van Aalten DM (2016) Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins. Biochem J 473:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Tvaroška I, Kozmon S, Wimmerová M, Koča J (2012) Substrate-assisted catalytic mechanism of O-GlcNAc transferase discovered by quantum mechanics/molecular mechanics investigation. J Am Chem Soc 134:15563–15571

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan K, Niranjan T, Selvan N, Teo CF, May M, Patel S, Weatherly B, Skinner C, Opitz J, Carey J, Viskochil D, Gecz J, Shaw M, Peng Y, Alexov E, Wang T, Schwartz C, Wells L (2017) Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. J Biol Chem 292:8948–8963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vajaria BN, Patel PS (2017) Glycosylation: a hallmark of cancer. Glycoconj J 34:147–156

    Article  CAS  PubMed  Google Scholar 

  • Valero V, Pawlik TM, Anders RA (2015) Emerging role of Hpo signaling and YAP in hepatocellular carcinoma. J Hepatocell Carcinoma 2:69–78

    PubMed  PubMed Central  Google Scholar 

  • Varki A, Kannagi R, Toole B, Stanley P (2015) Glycosylation Changes in Cancer, Essentials of Glycobiology

  • Varmus H, Pao W, Politi K, Podsypanina K, Du YC (2005) Oncogenes come of age. Cold Spring Harb Symp Quant Biol 70:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vocadlo DJ (2012) O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr Opin Chem Biol 16:488–497

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Marquardt C, Foker J (1976) Aerobic glycolysis during lymphocyte proliferation. Nature 261:702–705

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis RE (2012) Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy. Int J Mol Sci 13:316–335

    Article  CAS  PubMed  Google Scholar 

  • Wu D (2017) Cai Y, Jin J. Potential coordination role between O-GlcNAcylation and epigenetics, Protein Cell

    Google Scholar 

  • Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, Zhang H, Zhang L, Liu T, Liu Q, Wang L, Lou Z, Pei H (2014) AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res 42:5594–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol 8:1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451:964–969

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yin X, Yang H, Xu Y (2015a) Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell 58:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yang YR, Jang HJ, Lee YH, Kim IS, Lee H, Ryu SH, Suh PG (2015b) O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α. Placenta 36:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Yehezkel G, Cohen L, Kliger A, Manor E, Khalaila I (2012) O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-β-D-glucosaminidase silencing on cell phenotype and transcriptome. J Biol Chem 287:28755–28769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA, Peters EC, Driggers EM, Hsieh-Wilson LC (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Li S (2017) Non-metabolic functions of glycolytic enzymes in tumorigenesis. Oncogene 36:2629–2636

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Zhao RX, Chen J, Li Y, Li XD, Liu XL, Zhang WM, Quan CS, Wang YS, Zhai YX, Wang JW, Youssef M, Cui R, Liang J, Genovese N, Chow LT, Li YL, Xu ZX (2016) O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis. Proc Natl Acad Sci U S A 113:9333–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Chen X (2016) Potential role of O-GlcNAcylation and involvement of PI3K/Akt1 pathway in the expression of oncogenic phenotypes of gastric cancer cells in vitro. Biotechnol Appl Biochem 63:841–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tan EP, VandenHull NJ, Peterson KR, Slawson C (2014) O-GlcNAcase Expression is Sensitive to Changes in O-GlcNAc Homeostasis. Front Endocrinol (Lausanne) 5:206

    Google Scholar 

  • Zhang P, Wang C, Ma T, You S (2015) O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway. Onco Targets Ther 8:3305–3313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhou P, Li X, Shi Q, Li D, Ju X (2017a) Bitterness in sugar: O-GlcNAcylation aggravates pre-B acute lymphocytic leukemia through glycolysis via the PI3K/Akt/c-Myc pathway. Am J Cancer Res 7:1337–1349

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Qiao Y, Wu Q, Chen Y, Zou S, Liu X, Zhu G, Zhao Y, Chen Y, Yu Y, Pan Q, Wang J, Sun F (2017b) The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 8:15280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Huo J, Liu Y, Liu H, Liu G, Chen Y, Chen B (2016) Elevated glucose levels impair the WNT/β-catenin pathway via the activation of the hexosamine biosynthesis pathway in endometrial cancer. J Steroid Biochem Mol Biol 159:19–25

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, Xu Z, Xiao Y, Cheng C, Shen A (2016) O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology 26:820–833

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Hanover.

Electronic supplementary material

Supplemental Table I.

Listing of the top 50 human genes mutated in diverse tumor types derived from the Cancer Genome atlas. Details of the ranking analysis are available elsewhere (Lawrence et al. 2014). (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanover, J.A., Chen, W. & Bond, M.R. O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 50, 155–173 (2018). https://doi.org/10.1007/s10863-018-9751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-018-9751-2

Keywords

Navigation