Skip to main content

Advertisement

Log in

Netrin-1 Alleviates Early Brain Injury by Regulating Ferroptosis via the PPARγ/Nrf2/GPX4 Signaling Pathway Following Subarachnoid Hemorrhage

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Etminan N, Chang H-S, Hackenberg K, et al. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population a systematic review and meta-analysis. JAMA Neurol. 2019;76(5):588–97. https://doi.org/10.1001/jamaneurol.2019.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Korja M, Lehto H, Juvela S, et al. Incidence of subarachnoid hemorrhage is decreasing together with decreasing smoking rates. Neurology. 2016;87(11):1118–23. https://doi.org/10.1212/wnl.0000000000003091.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mackey J, Khoury JC, Alwell K, et al. Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population. Neurology. 2016;87(21):2192–7. https://doi.org/10.1212/wnl.0000000000003353.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Macdonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10(7):618–25. https://doi.org/10.1016/s1474-4422(11)70108-9[publishedOnlineFirst:2011/06/07].

    Article  CAS  PubMed  Google Scholar 

  5. Chen JH, Li MC, Zhu X, et al. Atorvastatin reduces cerebral vasospasm and infarction after aneurysmal subarachnoid hemorrhage in elderly Chinese adults. Aging-Us. 2020;12(3):2939–51. https://doi.org/10.18632/aging.102788.

    Article  CAS  Google Scholar 

  6. Chen J, Xuan Y, Chen Y, et al. Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPAR gamma/NF-KB signalling pathway. J Cell Mol Med. 2019;23(3):2256–62. https://doi.org/10.1111/jcmm.14105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J-H, Wu T, Xia W-Y, et al. An early neuroprotective effect of atorvastatin against subarachnoid hemorrhage. Neural Regen Res. 2020;15(10):1947–54. https://doi.org/10.4103/1673-5374.280326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J-H, Wu T, Yang L-K, et al. Protective effects of atorvastatin on cerebral vessel autoregulation in an experimental rabbit model of subarachnoid hemorrhage. Mol Med Rep. 2018;17(1):1651–9. https://doi.org/10.3892/mmr.2017.8074.

    Article  CAS  PubMed  Google Scholar 

  9. Chen JH, Yang LK, Chen L, et al. Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of AQP4 expression in rabbits. Int J Mol Med. 2016;37(4):1059–66. https://doi.org/10.3892/ijmm.2016.2506[publishedOnlineFirst:2016/03/05].

    Article  CAS  PubMed  Google Scholar 

  10. Cahill J, Zhang JH. Subarachnoid hemorrhage is it time for a new direction? Stroke. 2009;40(3):S86–7. https://doi.org/10.1161/strokeaha.108.533315.

    Article  PubMed  Google Scholar 

  11. Dong Y, Fan C, Hu W, et al. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res. 2016;60(3):253–62. https://doi.org/10.1111/jpi.12300.

    Article  CAS  PubMed  Google Scholar 

  12. Kenny EM, Fidan E, Yang Q, et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019;47(3):410–8. https://doi.org/10.1097/ccm.0000000000003555.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zille M, Karuppagounder SS, Chen Y, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48(4):1033–43. https://doi.org/10.1161/strokeaha.116.015609.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollingshead JR, Phillips RK. Haemorrhoids: modern diagnosis and treatment. Postgrad Med J. 2016;92(1083):4–8. https://doi.org/10.1136/postgradmedj-2015-133328[publishedOnlineFirst:2015/11/13].

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Li M, Liu Z, Wang Y, Xiong K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front Cell Neurosci. 2022;16:1025708. https://doi.org/10.3389/fncel.2022.1025708.

  17. Tuo Qz, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017;22(11):1520–30. https://doi.org/10.1038/mp.2017.171.

  18. Hayes JD, Dinkova-Kostova AT. Epigenetic Control of NRF2-directed cellular antioxidant status in dictating life-death decisions. Mol Cell. 2017;68(1):5–7. https://doi.org/10.1016/j.molcel.2017.09.023.

    Article  CAS  PubMed  Google Scholar 

  19. Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radical Biol Med. 2018;129:454–62. https://doi.org/10.1016/j.freeradbiomed.2018.10.426.

    Article  CAS  Google Scholar 

  20. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9–17. https://doi.org/10.1038/nchembio.1416.

    Article  CAS  PubMed  Google Scholar 

  21. Petit A, Sellers DL, Liebl DJ, et al. Adult spinal cord progenitor cells are repelled by netrin-1 in the embryonic and injured adult spinal cord. Proc Natl Acad Sci USA. 2007;104(45):17837–42. https://doi.org/10.1073/pnas.0703240104.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xu K, Wu Z, Renier N, et al. NEURAL MIGRATION Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science. 2014;344(6189):1275–9. https://doi.org/10.1126/science.1255149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huyghe A, Furlan G, Ozmadenci D, et al. Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nat Cell Biol. 2020;22(4). https://doi.org/10.1038/s41556-020-0483-2.

  24. Xie Z, Huang L, Enkhjargal B, et al. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPAR gamma/NF kappa B signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 2018;69:190–202. https://doi.org/10.1016/j.bbi.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  25. Xie Z, Enkhjargal B, Reis C, et al. Netrin-1 preserves blood-brain barrier integrity through deleted in colorectal cancer/focal adhesion kinase/RhoA signaling pathway following subarachnoid hemorrhage in rats. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/jaha.116.005198.

  26. Xie Z, Huang L, Enkhjargal B, et al. Intranasal administration of recombinant Netrin-1 attenuates neuronal apoptosis by activating DCC/APPL-1/AKT signaling pathway after subarachnoid hemorrhage in rats. Neuropharmacology. 2017;119:123–33. https://doi.org/10.1016/j.neuropharm.2017.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bervejillo ML, Bonanata J, Franchini GR, et al. A FABP4-PPAR gamma signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes. Redox Biol. 2020;29. https://doi.org/10.1016/j.redox.2019.101376.

  28. Li Q, Tian Z, Wang M, et al. Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPAR gamma/Nrf2/NF-kappa B signaling pathway. Int Immunopharmacol. 2019;66:309–16. https://doi.org/10.1016/j.intimp.2018.11.044.

    Article  CAS  PubMed  Google Scholar 

  29. Cai W, Yang T, Liu H, et al. Peroxisome proliferator-activated receptor gamma (PPAR gamma): a master gatekeeper in CNS injury and repair. Prog Neurobiol. 2018;163:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  30. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23. https://doi.org/10.1016/j.redox.2019.101107.

  31. Ishii T, Warabi E, Mann GE. Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis. Free Radical Biol Med. 2019;133:169–78. https://doi.org/10.1016/j.freeradbiomed.2018.09.002.

    Article  CAS  Google Scholar 

  32. Chang L-C, Chiang S-K, Chen S-E, et al. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett. 2018;416:124–37. https://doi.org/10.1016/j.canlet.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  33. Pan PY, Zhao HL, Zhang X, et al. Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation. 2020;17(1). https://doi.org/10.1186/s12974-020-1699-6

  34. Alim I, Caulfield JT, Chen YX, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177(5):1262-+. https://doi.org/10.1016/j.cell.2019.03.032.

  35. Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral-artery occlusion in rats - statistical validation. Stroke. 1995;26(4):627–34. https://doi.org/10.1161/01.Str.26.4.627.

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Chen G, Li J, et al. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: a possible role for the regulation of pro-inflammatory cytokines. J Pineal Res. 2014;57(3):340–7. https://doi.org/10.1111/jpi.12173.

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Green M, Choi JE, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569(7755):270-+. https://doi.org/10.1038/s41586-019-1170-y.

  38. Das S, Chattopadhyay D, Chatterjee SK, et al. Increase in PPARγ inhibitory phosphorylation by fetuin-A through the activation of Ras-MEK-ERK pathway causes insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166050. https://doi.org/10.1016/j.bbadis.2020.166050[publishedOnlineFirst:2020/12/29].

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Yao L, Liang Q, et al. Propofol protects hippocampal neurons from hypoxia-reoxygenation injury by decreasing calcineurin-induced calcium overload and activating YAP signaling. Oxid Med Cell Longev. 2018;2018:1725191. https://doi.org/10.1155/2018/1725191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zille M, Karuppagounder SS, Chen YX, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48(4):1033–43. https://doi.org/10.1161/strokeaha.116.015609.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Polvani S, Tarocchi M, Galli A. PPAR gamma and oxidative stress: con(beta) catenating NRF2 and FOXO. Ppar Res. 2012;2012. https://doi.org/10.1155/2012/641087.

  42. Chung SS, Kim M, Youn B-S, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20–30. https://doi.org/10.1128/mcb.00544-08.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Wang Z, Liu JZ, et al. Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol In Vitro. 2011;25(4):839–47. https://doi.org/10.1016/j.tiv.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  44. Cho HY, Gladwell W, Wang XT, et al. Nrf2-regulated PPAR gamma expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 2010;182(2):170–82. https://doi.org/10.1164/rccm.200907-1047OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hussein OE, Hozayen WG, Bin-Jumah MN, et al. Chicoric acid prevents methotrexate hepatotoxicity via attenuation of oxidative stress and inflammation and up-regulation of PPAR gamma and Nrf2/HO-1 signaling. Environ Sci Pollut Res. 2020. https://doi.org/10.1007/s11356-020-08557-y.

    Article  Google Scholar 

  46. Chen J, Wang Y, Wu J, et al. The potential value of targeting ferroptosis in early brain injury after acute CNS disease. Front Mol Neurosci. 2020;13:110. https://doi.org/10.3389/fnmol.2020.00110[publishedOnlineFirst:2020/07/07].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang M, Ke Y, Li Y, et al. The nephroprotective effects and mechanisms of rehmapicrogenin include ROS inhibition via an oestrogen-like pathway both in vivo and in vitro. Biomed Pharmacother. 2021:111305. https://doi.org/10.1016/j.biopha.2021.111305 [published Online First: 2021/04/07] .

  48. Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32(6):920–37. https://doi.org/10.1016/j.cmet.2020.10.011[publishedOnlineFirst:2020/11/21].

    Article  CAS  PubMed  Google Scholar 

  49. Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8. https://doi.org/10.1038/s41586-019-1707-0[publishedOnlineFirst:2019/10/22].

    Article  CAS  PubMed  Google Scholar 

  50. Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92. https://doi.org/10.1038/s41586-019-1705-2[publishedOnlineFirst:2019/10/22].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J-H, Yang L-K, Chen L, et al. Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of AQP4 expression in rabbits. Int J Mol Med. 2016;37(4):1059–66. https://doi.org/10.3892/ijmm.2016.2506.

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Zhang C, Yan T, et al. Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of pyroptosis and neuroinflammation. J Cell Physiol. 2021;236(10):6920–31. https://doi.org/10.1002/jcp.30351[publishedOnlineFirst:2021/04/02].

    Article  CAS  PubMed  Google Scholar 

  53. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9–17. https://doi.org/10.1038/nchembio.1416[publishedOnlineFirst:2013/12/19].

    Article  CAS  PubMed  Google Scholar 

  54. FriedmannAngeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91. https://doi.org/10.1038/ncb3064[publishedOnlineFirst:2014/11/18].

    Article  CAS  Google Scholar 

  55. Stockwell BR, FriedmannAngeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85. https://doi.org/10.1016/j.cell.2017.09.021[publishedOnlineFirst:2017/10/07].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 2021;93:312–21. https://doi.org/10.1016/j.bbi.2021.01.003[publishedOnlineFirst:2021/01/15].

    Article  CAS  PubMed  Google Scholar 

  57. Fang Y, Chen X, Tan Q, et al. Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: a new mechanism of action. ACS Cent Sci. 2021;7(6):980–9. https://doi.org/10.1021/acscentsci.0c01592[publishedOnlineFirst:2021/07/09].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuo QZ, Masaldan S, Southon A, et al. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics. 2021. https://doi.org/10.1007/s13311-021-01111-9[publishedOnlineFirst:2021/09/10].

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–25. https://doi.org/10.1016/j.brainres.2018.09.012[publishedOnlineFirst:2018/09/12].

    Article  CAS  PubMed  Google Scholar 

  60. Karuppagounder SS, Alin L, Chen Y, et al. N-acetylcysteine targets 5 lipoxygenase-derived, toxic lipids and can synergize with prostaglandin E(2) to inhibit ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann Neurol. 2018;84(6):854–72. https://doi.org/10.1002/ana.25356[publishedOnlineFirst:2018/10/09].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duan L, Zhang Y, Yang Y, et al. Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol. 2021;12:629379. https://doi.org/10.3389/fphar.2021.629379[publishedOnlineFirst:2021/04/06].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuang H, Wang T, Liu L, et al. Treatment of early brain injury after subarachnoid hemorrhage in the rat model by inhibiting p53-induced ferroptosis. Neurosci Lett. 2021;762:136134. https://doi.org/10.1016/j.neulet.2021.136134[publishedOnlineFirst:2021/07/27].

    Article  CAS  PubMed  Google Scholar 

  63. Liu C, Chen Y, Cui W, et al. Inhibition of neuronal necroptosis mediated by RIP1/RIP3/MLKL provides neuroprotective effects on kaolin-induced hydrocephalus in mice. Cell Prolif. 2021;54(9):e13108. https://doi.org/10.1111/cpr.13108[publishedOnlineFirst:2021/08/11].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qu XF, Liang TY, Wu DG, et al. Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci Ther. 2021;27(4):449–63. https://doi.org/10.1111/cns.13548[publishedOnlineFirst:2020/12/15].

    Article  CAS  PubMed  Google Scholar 

  65. Gao SQ, Liu JQ, Han YL, et al. Neuroprotective role of glutathione peroxidase 4 in experimental subarachnoid hemorrhage models. Life Sci. 2020;257:118050. https://doi.org/10.1016/j.lfs.2020.118050[publishedOnlineFirst:2020/07/08].

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Liu Y, Wu P, et al. Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol. 2021;41(2):263–78. https://doi.org/10.1007/s10571-020-00850-1[publishedOnlineFirst:2020/04/22].

    Article  CAS  PubMed  Google Scholar 

  67. Xie Z, Huang L, Enkhjargal B, et al. Recombinant netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun. 2018;69:190–202. https://doi.org/10.1016/j.bbi.2017.11.012[publishedOnlineFirst:2017/11/23].

    Article  CAS  PubMed  Google Scholar 

  68. Podjaski C, Alvarez JI, Bourbonniere L, et al. Netrin 1 regulates blood-brain barrier function and neuroinflammation. Brain. 2015;138(Pt 6):1598–612. https://doi.org/10.1093/brain/awv092[publishedOnlineFirst:2015/04/24].

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ahn EH, Kang SS, Liu X, et al. BDNF and Netrin-1 repression by C/EBPβ in the gut triggers Parkinson’s disease pathologies, associated with constipation and motor dysfunctions. Prog Neurobiol. 2021;198:101905. https://doi.org/10.1016/j.pneurobio.2020.101905[publishedOnlineFirst:2020/09/11].

    Article  CAS  PubMed  Google Scholar 

  70. Dragich JM, Kuwajima T, Hirose-Ikeda M, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Elife. 2016;5. https://doi.org/10.7554/eLife.14810 [published Online First: 2016/09/21] .

  71. Yu J, Li C, Ding Q, et al. Netrin-1 ameliorates blood-brain barrier impairment secondary to ischemic stroke via the activation of PI3K pathway. Front Neurosci. 2017;11:700. https://doi.org/10.3389/fnins.2017.00700[publishedOnlineFirst:2018/01/10].

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cho HY, Gladwell W, Wang X, et al. Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 2010;182(2):170–82. https://doi.org/10.1164/rccm.200907-1047OC[publishedOnlineFirst:2010/03/13].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cao JY, Poddar A, Magtanong L, et al. A Genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep. 2019;26(6):1544-56.e8. https://doi.org/10.1016/j.celrep.2019.01.043[publishedOnlineFirst:2019/02/07].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454–62. https://doi.org/10.1016/j.freeradbiomed.2018.10.426[publishedOnlineFirst:2018/10/20].

    Article  CAS  PubMed  Google Scholar 

  75. Bulters D, Gaastra B, Zolnourian A, et al. Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nat Rev Neurol. 2018;14(7):416–32. https://doi.org/10.1038/s41582-018-0020-0[publishedOnlineFirst:2018/06/22].

    Article  CAS  PubMed  Google Scholar 

  76. Schallner N, Pandit R, LeBlanc R 3rd, et al. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest. 2015;125(7):2609–25. https://doi.org/10.1172/jci78443[publishedOnlineFirst:2015/05/27].

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107. https://doi.org/10.1016/j.redox.2019.101107[publishedOnlineFirst:2019/01/30].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants for donating samples for this study. And we thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This work was supported by the Natural Science Foundation of China (no. 81871589), Jiangsu Provincial Natural Science Foundation (grant no.: BK20201140), Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee (HB2020119), and Wuxi Science and Technology Development Foundation (grant no.: N20201008).

Author information

Authors and Affiliations

Authors

Contributions

JC, KX, and QC designed the experiments of the study. YW, ML, XZ, and KX contributed to the execution of experiments and manuscript composition. JC, ML, and ZL collected and analyzed clinical data. JC, QC, and KX performed animal and cell experiments. JC performed the statistical analysis. JC and ML compiled the figures and wrote the manuscript. All authors discussed the results, revised the manuscript, and read and approved the final manuscript.

Corresponding authors

Correspondence to Qianxue Chen or Kun Xiong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

The Institutional Animal Care and Use Committee of Wuxi Clinical College of Anhui Medical University (YXLL-2019–020) granted approval for all the procedures and mice used in the research, and all procedures were performed in compliance with the protocols stipulated by the National Institutes of Health (NIH) and Animal Research: Reporting of In Vivo Experiments (NIH publication No. 80–23, revised 1996).The serum Netrin-1 study was approved by the Renmin Hospital of Wuhan University and Anhui Medical University affiliated Wuxi Clinical College’s Clinical Research Ethics Committee (YXLL-2020111). We obtained written informed consent from the patients or family members of patients.

Consent for Publication

We have obtained consent to publish from the participants to report patient data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. 1

Downregulation of Nrf2 expression by siRNA transfection. a. Relative protein expressions of Nrf2 in PC12 neurons were significantly decreased in si-Nrf2-1 and si-Nrf2-2 groups by western blot analysis (n = 5; *p 0.01 vs. si-Control group; t-test; mean ± SD). b. MTT assay demonstrated that si-Nrf2 transfection did not affect cell viability. c. Microscopic analysis showed that PC12 neuron morphology was normal 48 hours after si-Nrf2 transfection. (PNG 1448 kb)

High Resolution Image (TIF 12765 KB)

Supplementary Table 1

Sequences of the primers for quantitative RT-PCR (DOC 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y., Li, M. et al. Netrin-1 Alleviates Early Brain Injury by Regulating Ferroptosis via the PPARγ/Nrf2/GPX4 Signaling Pathway Following Subarachnoid Hemorrhage. Transl. Stroke Res. 15, 219–237 (2024). https://doi.org/10.1007/s12975-022-01122-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01122-4

Keywords

Navigation