Skip to main content

Advertisement

Log in

Apolipoprotein E Exerts a Whole-Brain Protective Property by Promoting M1? Microglia Quiescence After Experimental Subarachnoid Hemorrhage in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a neurologically destructive stroke in which early brain injury (EBI) plays a pivotal role in poor patient outcomes. Expanding upon our previous work, multiple techniques and methods were used in this preclinical study to further elucidate the mechanisms underlying the beneficial effects of apolipoprotein E (ApoE) against EBI after SAH in murine apolipoprotein E gene-knockout mice (Apoe−/−, KO) and wild-type mice (WT) on a C57BL/6J background. We reported that Apoe deficiency resulted in a more extensive EBI at 48 h after SAH in mice demonstrated by MRI scanning and immunohistochemical staining and exhibited more extensive white matter injury and neuronal apoptosis than WT mice. These changes were associated with an increase in NADPH oxidase 2 (NOX2) expression, an important regulator of both oxidative stress and inflammatory cytokines. Furthermore, immunohistochemical analysis revealed that NOX2 was abundantly expressed in activated M1 microglia. The JAK2/STAT3 signaling pathway, an upstream regulator of NOX2, was increased in WT mice and activated to an even greater extent in Apoe−/− mice; whereas, the JAK2-specific inhibitor, AG490, reduced NOX2 expression, oxidative stress, and inflammation in Apoe-deficient mice. Also, apoE-mimetic peptide COG1410 suppressed the JAK2/STAT3 signaling pathway and significantly reduced M1 microglia activation with subsequent attenuation of oxidative stress and inflammation after SAH. Taken together, apoE and apoE-mimetic peptide have whole-brain protective effects that may reduce EBI after SAH via M1 microglial quiescence through the attenuation of the JAK2/STAT3/NOX2 signaling pathway axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Suzuki H, Shiba M, Nakatsuka Y, Nakano F, Nishikawa H. Higher cerebrospinal fluid pH may contribute to the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2017;8(2):165–73. https://doi.org/10.1007/s12975-016-0500-8.

    Article  CAS  PubMed  Google Scholar 

  2. Etminan N. Aneurysmal subarachnoid hemorrhage—status quo and perspective. Transl Stroke Res. 2015;6(3):167–70. https://doi.org/10.1007/s12975-015-0398-6.

    Article  PubMed  Google Scholar 

  3. Sabri M, Lass E, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013;2013:394036–9. https://doi.org/10.1155/2013/394036.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fan LF, He PY, Peng YC, Du QH, Ma YJ, Jin JX, et al. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med. 2017;112:336–49. https://doi.org/10.1016/j.freeradbiomed.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  5. Cai J, Cao S, Chen J, Yan F, Chen G, Dai Y. Progesterone alleviates acute brain injury via reducing apoptosis and oxidative stress in a rat experimental subarachnoid hemorrhage model. Neurosci Lett. 2015;600:238–43. https://doi.org/10.1016/j.neulet.2015.06.023.

    Article  CAS  PubMed  Google Scholar 

  6. Atangana E, Schneider UC, Blecharz K, Magrini S, Wagner J, Nieminen-Kelha M, et al. Intravascular inflammation triggers intracerebral activated microglia and contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Transl Stroke Res. 2017;8(2):144–56. https://doi.org/10.1007/s12975-016-0485-3.

    Article  CAS  PubMed  Google Scholar 

  7. Hasegawa Y, Suzuki H, Uekawa K, Kawano T, Kim-Mitsuyama S. Characteristics of cerebrovascular injury in the hyperacute phase after induced severe subarachnoid hemorrhage. Transl Stroke Res. 2015;6(6):458–66. https://doi.org/10.1007/s12975-015-0423-9.

    Article  CAS  PubMed  Google Scholar 

  8. Egashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014;45(7):2141–3. https://doi.org/10.1161/STROKEAHA.114.005307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, et al. MRI characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res. 2017;8(3):234–43. https://doi.org/10.1007/s12975-016-0511-5.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng C, Jiang L, Yang Y, Wu H, Huang Z, Sun X. Effect of APOE gene polymorphism on early cerebral perfusion after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2015;6(6):446–50. https://doi.org/10.1007/s12975-015-0426-6.

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence DW, Comper P, Hutchison MG, Sharma B. The role of apolipoprotein E episilon (epsilon)-4 allele on outcome following traumatic brain injury: a systematic review. Brain Inj. 2015;29(9):1018–31. https://doi.org/10.3109/02699052.2015.1005131.

    Article  PubMed  Google Scholar 

  12. Handattu SP, Monroe CE, Nayyar G, Palgunachari MN, Kadish I, van Groen T, et al. In vivo and in vitro effects of an apolipoprotein e mimetic peptide on amyloid-beta pathology. J Alzheimers Dis. 2013;36(2):335–47. https://doi.org/10.3233/JAD-122377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei J, Zheng M, Liang P, Wei Y, Yin X, Tang Y, et al. Apolipoprotein E and its mimetic peptide suppress Th1 and Th17 responses in experimental autoimmune encephalomyelitis. Neurobiol Dis. 2013;56:59–65. https://doi.org/10.1016/j.nbd.2013.04.009.

    Article  CAS  PubMed  Google Scholar 

  14. Laskowitz DT, Vitek MP. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics. 2007;8(8):959–69. https://doi.org/10.2217/14622416.8.8.959.

    Article  CAS  PubMed  Google Scholar 

  15. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7(35):56030–44. https://doi.org/10.18632/oncotarget.10821.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peng JH, Qin XH, Pang JW, Wu Y, Dong JH, Huang CR, et al. Apolipoprotein E epsilon4: a possible risk factor of intracranial pressure and white matter perfusion in good-grade aneurysmal subarachnoid hemorrhage patients at early stage. Front Neurol. 2017;8:150. https://doi.org/10.3389/fneur.2017.00150.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pang J, Chen Y, Kuai L, Yang P, Peng J, Wu Y, et al. Inhibition of blood-brain barrier disruption by an apolipoprotein E-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl Stroke Res. 2017;8(3):257–72. https://doi.org/10.1007/s12975-016-0507-1.

    Article  CAS  PubMed  Google Scholar 

  18. Gao J, Wang H, Sheng H, Lynch JR, Warner DS, Durham L, et al. A novel apoE-derived therapeutic reduces vasospasm and improves outcome in a murine model of subarachnoid hemorrhage. Neurocrit Care. 2006;4(1):25–31. https://doi.org/10.1385/NCC:4:1:025.

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Anderson LG, Lascola CD, James ML, Venkatraman TN, Bennett ER, et al. ApolipoproteinE mimetic peptides improve outcome after focal ischemia. Exp Neurol. 2013;241:67–74. https://doi.org/10.1016/j.expneurol.2012.11.027.

    Article  CAS  PubMed  Google Scholar 

  20. Qin X, You H, Cao F, Wu Y, Peng J, Pang J, et al. Apolipoprotein E mimetic peptide increases cerebral glucose uptake by reducing blood-brain barrier disruption after controlled cortical impact in mice: an (18)F-fluorodeoxyglucose PET/CT study. J Neurotrauma. 2017;34(4):943–51. https://doi.org/10.1089/neu.2016.4485.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cao F, Jiang Y, Wu Y, Zhong J, Liu J, Qin X, et al. Apolipoprotein E-mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury. J Neurotrauma. 2016;33(2):175–82. https://doi.org/10.1089/neu.2015.3887.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laskowitz DT, Lei B, Dawson HN, Wang H, Bellows ST, Christensen DJ, et al. The apoE-mimetic peptide, COG1410, improves functional recovery in a murine model of intracerebral hemorrhage. Neurocrit Care. 2012;16(2):316–26. https://doi.org/10.1007/s12028-011-9641-5.

    Article  CAS  PubMed  Google Scholar 

  23. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–6. https://doi.org/10.4103/0976-500X.119726.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muroi C, Fujioka M, Marbacher S, Fandino J, Keller E, Iwasaki K, et al. Mouse model of subarachnoid hemorrhage: technical note on the filament perforation model. Acta Neurochir Suppl. 2015;120:315–20. https://doi.org/10.1007/978-3-319-04981-6_54.

    Article  PubMed  Google Scholar 

  25. Damm J, Harden LM, Gerstberger R, Roth J, Rummel C. The putative JAK-STAT inhibitor AG490 exacerbates LPS-fever, reduces sickness behavior, and alters the expression of pro- and anti-inflammatory genes in the rat brain. Neuropharmacology. 2013;71:98–111. https://doi.org/10.1016/j.neuropharm.2013.03.014.

    Article  CAS  PubMed  Google Scholar 

  26. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34. https://doi.org/10.1016/j.jneumeth.2007.08.004.

    Article  PubMed  Google Scholar 

  27. Chen Q, Shi X, Tan Q, Feng Z, Wang Y, Yuan Q, et al. Simvastatin promotes hematoma absorption and reduces hydrocephalus following intraventricular hemorrhage in part by upregulating CD36. Transl Stroke Res. 2017;8(4):362–73. https://doi.org/10.1007/s12975-017-0521-y.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang B, Li L, Chen Q, Tao Y, Yang L, Zhang B, et al. Role of glibenclamide in brain injury after intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):183–93. https://doi.org/10.1007/s12975-016-0506-2.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, et al. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol Neurobiol. 2017;54(8):5928–40. https://doi.org/10.1007/s12035-016-0108-8.

    Article  CAS  PubMed  Google Scholar 

  30. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91. https://doi.org/10.1038/nn.4338.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9. https://doi.org/10.1007/s12975-015-0428-4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(12):1864–74. https://doi.org/10.1038/jcbfm.2013.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Ma MW, Dhandapani KM, Brann DW. Regulatory role of NADPH oxidase 2 in the polarization dynamics and neurotoxicity of microglia/macrophages after traumatic brain injury. Free Radic Biol Med. 2017;113:119–31. https://doi.org/10.1016/j.freeradbiomed.2017.09.017.

    Article  CAS  PubMed  Google Scholar 

  34. Bahar E, Kim JY, Yoon H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-kappaB and HO-1/Nrf2 pathways. Int J Mol Sci. 2017;18(9). https://doi.org/10.3390/ijms18091989.

    Article  Google Scholar 

  35. Ito F, Yamada Y, Shigemitsu A, Akinishi M, Kaniwa H, Miyake R, et al. Role of oxidative stress in epigenetic modification in endometriosis. Reprod Sci. 2017;24(11):1493–502. https://doi.org/10.1177/1933719117704909.

    Article  CAS  PubMed  Google Scholar 

  36. Justicia C, Salas-Perdomo A, Perez-de-Puig I, Deddens LH, van Tilborg GAF, Castellvi C, et al. Uric acid is protective after cerebral ischemia/reperfusion in hyperglycemic mice. Transl Stroke Res. 2017;8(3):294–305. https://doi.org/10.1007/s12975-016-0515-1.

    Article  CAS  PubMed  Google Scholar 

  37. Sundboll J, Horvath-Puho E, Schmidt M, Dekkers OM, Christiansen CF, Pedersen L, et al. Preadmission use of glucocorticoids and 30-day mortality after stroke. Stroke. 2016;47(3):829–35. https://doi.org/10.1161/STROKEAHA.115.012231.

    Article  CAS  PubMed  Google Scholar 

  38. Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017;31(2):109–33. https://doi.org/10.1007/s40263-016-0405-9.

    Article  CAS  PubMed  Google Scholar 

  39. Dose J, Huebbe P, Nebel A, Rimbach G. APOE genotype and stress response—a mini review. Lipids Health Dis. 2016;15:121. https://doi.org/10.1186/s12944-016-0288-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cai X, Li X, Li L, Huang XZ, Liu YS, Chen L, et al. Adiponectin reduces carotid atherosclerotic plaque formation in ApoE−/− mice: roles of oxidative and nitrosative stress and inducible nitric oxide synthase. Mol Med Rep. 2015;11(3):1715–21. https://doi.org/10.3892/mmr.2014.2947.

    Article  CAS  PubMed  Google Scholar 

  41. Ferguson S, Mouzon B, Kayihan G, Wood M, Poon F, Doore S, et al. Apolipoprotein E genotype and oxidative stress response to traumatic brain injury. Neuroscience. 2010;168(3):811–9. https://doi.org/10.1016/j.neuroscience.2010.01.031.

    Article  CAS  PubMed  Google Scholar 

  42. Lomnitski L, Chapman S, Hochman A, Kohen R, Shohami E, Chen Y, et al. Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochim Biophys Acta. 1999;1453(3):359–68.

    Article  CAS  Google Scholar 

  43. Fan LM, Cahill-Smith S, Geng L, Du J, Brooks G, Li JM. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med. 2017;108:940–51. https://doi.org/10.1016/j.freeradbiomed.2017.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooney SJ, Bermudez-Sabogal SL, Byrnes KR. Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation. 2013;10:155. https://doi.org/10.1186/1742-2094-10-155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res. 2017;8(4):374–85. https://doi.org/10.1007/s12975-017-0520-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Li Z, Feng D, Shen H, Tian X, Li H, et al. Involvement of Nox2 and Nox4 NADPH oxidases in early brain injury after subarachnoid hemorrhage. Free Radic Res. 2017;51(3):316–28. https://doi.org/10.1080/10715762.2017.1311015.

    Article  CAS  PubMed  Google Scholar 

  47. Quesada IM, Lucero A, Amaya C, Meijles DN, Cifuentes ME, Pagano PJ, et al. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis. 2015;242(2):469–75. https://doi.org/10.1016/j.atherosclerosis.2015.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182(9):5693–701. https://doi.org/10.4049/jimmunol.0900092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hung CC, Lin CH, Chang H, Wang CY, Lin SH, Hsu PC, et al. Astrocytic GAP43 induced by the TLR4/NF-kappaB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J Neurosci. 2016;36(6):2027–43. https://doi.org/10.1523/JNEUROSCI.3457-15.2016.

    Article  CAS  PubMed  Google Scholar 

  50. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci. 2015;35(6):2817–29. https://doi.org/10.1523/JNEUROSCI.3516-14.2015.

    Article  CAS  PubMed  Google Scholar 

  51. Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke. 2017;48(12):3336–46. https://doi.org/10.1161/STROKEAHA.117.018505.

    Article  CAS  PubMed  Google Scholar 

  52. An JY, Pang HG, Huang TQ, Song JN, Li DD, Zhao YL, et al. AG490 ameliorates early brain injury via inhibition of JAK2/STAT3-mediated regulation of HMGB1 in subarachnoid hemorrhage. Exp Ther Med. 2018;15(2):1330–8. https://doi.org/10.3892/etm.2017.5539.

    Article  PubMed  Google Scholar 

  53. Yang L, Liu CC, Zheng H, Kanekiyo T, Atagi Y, Jia L, et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-kappaB signaling pathways. J Neuroinflammation. 2016;13(1):304. https://doi.org/10.1186/s12974-016-0772-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buunk AM, Groen RJM, Veenstra WS, Metzemaekers JDM, van der Hoeven JH, van Dijk JMC, et al. Cognitive deficits after aneurysmal and angiographically negative subarachnoid hemorrhage: memory, attention, executive functioning, and emotion recognition. Neuropsychology. 2016;30(8):961–9. https://doi.org/10.1037/neu0000296.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank radiologist Yu Guo and his team for the help of MRI scanning and data analysis. We also thank Cognosci Inc. for the kindness of providing ApoE mimetic peptide COG1410 and Prof. David Brody for the help with improving the quality of our manuscript.

Funding

This study was funded by grants from the National Natural Science Foundation of China (81771278, 81801176), Sichuan Provincial Health and Family Planning Commission research project (17PJ076), Technology Innovation Talent Project of Sichuan Province (2018RZ0090)), Luzhou Government-Southwest Medical University Strategic Cooperation Project (2016LZXNYD-J12, 2016LZXNYD-Z02), and the Youth Innovation Project of Sichuan Medical Scientific Research (Q17082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experimental procedures were approved by the Ethics Committee of Southwest Medical University and carried out in accordance with Stroke Treatment and Academic Roundtable (STAIR) guidelines and the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Peng, J., Matei, N. et al. Apolipoprotein E Exerts a Whole-Brain Protective Property by Promoting M1? Microglia Quiescence After Experimental Subarachnoid Hemorrhage in Mice. Transl. Stroke Res. 9, 654–668 (2018). https://doi.org/10.1007/s12975-018-0665-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0665-4

Keywords

Navigation