Skip to main content

Advertisement

Log in

Brain Arteriovenous Malformation Modeling, Pathogenesis, and Novel Therapeutic Targets

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bAVM:

Brain arteriovenous malformation

ICH:

Intracranial hemorrhage

HHT:

Hereditary hemorrhagic telangiectasia

ENG:

Endoglin

ALK1:

Activin-like kinase 1

VEGF:

Vascular endothelial growth factor

PDGFB:

Platelet-derived growth factor-B

AV:

shunt Arteriovenous shunt

f:

Allele with two loxP sites flanking the target sequence

References

  1. Young WL. Intracranial arteriovenous malformations: pathophysiology and hemodynamics (Chapter 6). In: Jafar JJ, Awad IA, Rosenwasser RH, editors. Vascular Malformations of the Central Nervous System. New York: Lippincott Williams & Wilkins; 1999. p. 95–126.

    Google Scholar 

  2. Fleetwood IG, Steinberg GK. Arteriovenous malformations. Lancet. 2002;359(9309):863–73.

    Article  PubMed  Google Scholar 

  3. Arteriovenous Malformation Study Group. Arteriovenous malformations of the brain in adults. N Engl J Med. 1999;340(23):1812–8.

    Article  Google Scholar 

  4. Han PP, Ponce FA, Spetzler RF. Intention-to-treat analysis of Spetzler-Martin grades IV and V arteriovenous malformations: natural history and treatment paradigm. J Neurosurg. 2003;98(1):3–7.

    Article  PubMed  Google Scholar 

  5. Bambakidis NC, Cockroft K, Connolly ES, Amin-Hanjani S, Morcos J, Meyers PM, et al. Preliminary results of the ARUBA sudy. Neurosurgery. 2013;73(2):E379–81.

    Article  PubMed  Google Scholar 

  6. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–21.

    Article  PubMed  Google Scholar 

  7. Rubin D, Santillan A, Greenfield JP, Souweidane M, Riina HA. Surgical management of pediatric cerebral arteriovenous malformations. Childs Nerv Syst. 2010;26(10):1337–44.

    Article  PubMed  Google Scholar 

  8. Potter CA, Armstrong-Wells J, Fullerton HJ, Young WL, Higashida RT, Dowd CF, et al. Neonatal giant pial arteriovenous malformation: genesis or rapid enlargement in the third trimester. J Neurointerv Surg. 2009;1(2):151–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Du R, Hashimoto T, Tihan T, Young WL, Perry VH, Lawton MT. Growth and regression of an arteriovenous malformation in a patient with hereditary hemorrhagic telangiectasia: case report. J Neurosurg. 2007;106(3):470–7.

    Article  PubMed  Google Scholar 

  10. Hino A, Fujimoto M, Iwamoto Y, Takahashi Y, Katsumori T. An adult case of recurrent arteriovenous malformation after "complete" surgical excision: a case report. Surg Neurol. 1999;52(2):156–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kader A, Goodrich JT, Sonstein WJ, Stein BM, Carmel PW, Michelsen WJ. Recurrent cerebral arteriovenous malformations after negative postoperative angiograms. J Neurosurg. 1996;85(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  12. Klimo Jr P, Rao G, Brockmeyer D. Pediatric arteriovenous malformations: a 15-year experience with an emphasis on residual and recurrent lesions. Childs Nerv Syst. 2007;23(1):31–7.

    Article  PubMed  Google Scholar 

  13. Lindqvist M, Karlsson B, Guo WY, Kihlstrom L, Lippitz B, Yamamoto M. Angiographic long-term follow-up data for arteriovenous malformations previously proven to be obliterated after gamma knife radiosurgery. Neurosurgery. 2000;46(4):803–8.

    CAS  PubMed  Google Scholar 

  14. Inoue S, Liu W, Inoue K, Mineharu Y, Takenaka K, Yamakawa H, et al. Combination of linkage and association studies for brain arteriovenous malformation. Stroke. 2007;38(4):1368–70.

    Article  PubMed  Google Scholar 

  15. Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke. 2012;43(1):72–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Braverman IM, Keh A, Jacobson BS. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol. 1990;95(4):422–7.

    Article  CAS  PubMed  Google Scholar 

  17. Shovlin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev. 2010;24(6):203–19.

    Article  CAS  PubMed  Google Scholar 

  18. Matsubara S, Mandzia JL, ter Brugge K, Willinsky RA, Faughnan ME, Manzia JL. Angiographic and clinical characteristics of patients with cerebral arteriovenous malformations associated with hereditary hemorrhagic telangiectasia. AJNR Am J Neuroradiol. 2000;21(6):1016–20.

    CAS  PubMed  Google Scholar 

  19. Maher CO, Piepgras DG, Brown Jr RD, Friedman JA, Pollock BE. Cerebrovascular manifestations in 321 cases of hereditary hemorrhagic telangiectasia. Stroke. 2001;32(4):877–82.

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, et al. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. Acta Neurochir Suppl. 2008;105:199–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Spetzler RF, Wilson CB, Weinstein P, Mehdorn M, Townsend J, Telles D. Normal perfusion pressure breakthrough theory. Clin Neurosurg. 1978;25:651–72.

    CAS  PubMed  Google Scholar 

  22. Scott BB, McGillicuddy JE, Seeger JF, Kindt GW, Giannotta SL. Vascular dynamics of an experimental cerebral arteriovenous shunt in the primate. Surg Neurol. 1978;10(1):34–8.

    CAS  PubMed  Google Scholar 

  23. Bederson JB, Wiestler OD, Brustle O, Roth P, Frick R, Yasargil MG. Intracranial venous hypertension and the effects of venous outflow obstruction in a rat model of arteriovenous fistula. Neurosurgery. 1991;29(3):341–50.

    Article  CAS  PubMed  Google Scholar 

  24. Chaloupka JC, Vinuela F, Robert J, Duckwiler GR. An in vivo arteriovenous malformation model in swine: preliminary feasibility and natural history study. AJNR Am J Neuroradiol. 1994;15(5):945–50.

    CAS  PubMed  Google Scholar 

  25. De Salles AAF, Solberg TD, Mischel P, Massoud TF, Plasencia A, Goetsch S, et al. Arteriovenous malformation animal model for radiosurgery: the rete mirabile. AJNR Am J Neuroradiol. 1996;17(8):1451–8.

    PubMed  Google Scholar 

  26. Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM. Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg. 1995;83(3):539–45.

    Article  CAS  PubMed  Google Scholar 

  27. Lawton MT, Jacobowitz R, Spetzler RF. Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg. 1997;87(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  28. Morgan MK, Anderson RE, Sundt Jr TM. A model of the pathophysiology of cerebral arteriovenous malformations by a carotid-jugular fistula in the rat. Brain Res. 1989;496(1–2):241–50.

    Article  CAS  PubMed  Google Scholar 

  29. Kutluk K, Schumacher M, Mironov A. The role of sinus thrombosis in occipital dural arteriovenous malformations—development and spontaneous closure. Neurochirurgia (Stuttg). 1991;34(5):144–7.

    CAS  PubMed  Google Scholar 

  30. Terada T, Higashida RT, Halbach VV, Dowd CF, Tsuura M, Komai N, et al. Development of acquired arteriovenous fistulas in rats due to venous hypertension. J Neurosurg. 1994;80(5):884–9.

    Article  CAS  PubMed  Google Scholar 

  31. TerBrugge KG, Lasjaunias P, Hallacq P. Experimental models in interventional neuroradiology. AJNR Am J Neuroradiol. 1991;12(6):1029–33.

    CAS  PubMed  Google Scholar 

  32. Kailasnath P, Chaloupka JC. Mathematical modeling of AVM physiology using compartmental network analysis: theoretical considerations and preliminary in vivo validation using a previously developed animal model. Neurol Res. 1996;18(4):361–6.

    CAS  PubMed  Google Scholar 

  33. Massoud TF, Ji C, Vinuela F, Turjman F, Guglielmi G, Duckwiler GR, et al. Laboratory simulations and training in endovascular embolotherapy with a swine arteriovenous malformation model. AJNR Am J Neuroradiol. 1996;17(2):271–9.

    CAS  PubMed  Google Scholar 

  34. Massoud TF, Ji C, Vinuela F, Guglielmi G, Robert J, Duckwiler GR, et al. An experimental arteriovenous malformation model in swine: anatomic basis and construction technique. AJNR Am J Neuroradiol. 1994;15(8):1537–45.

    CAS  PubMed  Google Scholar 

  35. Morgan MK, Anderson RE, Sundt Jr TM. The effects of hyperventilation on cerebral blood flow in the rat with an open and closed carotid-jugular fistula. Neurosurgery. 1989;25(4):606–11.

    Article  CAS  PubMed  Google Scholar 

  36. Murayama Y, Massoud TF, Vinuela F. Hemodynamic changes in arterial feeders and draining veins during embolotherapy of arteriovenous malformations: an experimental study in a swine model. Neurosurgery. 1998;43(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  37. Nagasawa S, Kawanishi M, Kondoh S, Kajimoto S, Yamaguchi K, Ohta T. Hemodynamic simulation study of cerebral arteriovenous malformations. Part 2. Effects of impaired autoregulation and induced hypotension. J Cereb Blood Flow Metab. 1996;16(1):162–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pietila TA, Zabramski JM, Thellier-Janko A, Duveneck K, Bichard WD, Brock M, et al. Animal model for cerebral arteriovenous malformation. Acta Neurochir (Wien). 2000;142(11):1231–40.

    Article  CAS  Google Scholar 

  39. Cambier S, Gline S, Mu D, Collins R, Araya J, Dolganov G, et al. Integrin alpha(v)beta8-mediated activation of transforming growth factor-beta by perivascular astrocytes: an angiogenic control switch. Am J Pathol. 2005;166(6):1883–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ, et al. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A. 2005;102(28):9884–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Murphy PA, Lam MT, Wu X, Kim TN, Vartanian SM, Bollen AW, et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A. 2008;105(31):10901–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Su H, Kim H, Pawlikowska L, Kitamura H, Shen F, Cambier S, et al. Reduced expression of integrin alphavbeta8 is associated with brain arteriovenous malformation pathogenesis. Am J Pathol. 2010;176(2):1018–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yao Y, Yao J, Radparvar M, Blazquez-Medela AM, Guihard PJ, Jumabay M, et al. Reducing Jagged 1 and 2 levels prevents cerebral arteriovenous malformations in matrix Gla protein deficiency. Proc Natl Acad Sci U S A. 2013;110(47):19071–6.

    Article  CAS  PubMed  Google Scholar 

  44. Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS. Vascular morphogenesis: tales of two syndromes. Hum Mol Genet. 2003;12 Suppl 1:R97–112.

    Article  CAS  PubMed  Google Scholar 

  45. Srinivasan S, Hanes MA, Dickens T, Porteous ME, Oh SP, Hale LP, et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet. 2003;12(5):473–82.

    Article  CAS  PubMed  Google Scholar 

  46. Bourdeau A, Faughnan ME, Letarte M. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med. 2000;10(7):279–85.

    Article  CAS  PubMed  Google Scholar 

  47. Satomi J, Mount RJ, Toporsian M, Paterson AD, Wallace MC, Harrison RV, et al. Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia. Stroke. 2003;34(3):783–9.

    Article  PubMed  Google Scholar 

  48. Xu B, Wu YQ, Huey M, Arthur HM, Marchuk DA, Hashimoto T, et al. Vascular endothelial growth factor induces abnormal microvasculature in the endoglin heterozygous mouse brain. J Cereb Blood Flow Metab. 2004;24(2):237–44.

    Article  CAS  PubMed  Google Scholar 

  49. Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, et al. Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol. 2008;295(6):H2250–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, et al. VEGF induces more severe cerebrovascular dysplasia in Eng+/− than in Alk1+/− mice. Transl Stroke Res. 2010;1(3):197–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet. 2000;26(3):328–31.

    Article  CAS  PubMed  Google Scholar 

  52. Sorensen LK, Brooke BS, Li DY, Urness LD. Loss of distinct arterial and venous boundaries in mice lacking endoglin, a vascular-specific TGFbeta coreceptor. Dev Biol. 2003;261(1):235–50.

    Article  CAS  PubMed  Google Scholar 

  53. Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119(11):3487–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Milton I, Ouyang D, Allen CJ, Yanasak NE, Gossage JR, Alleyne Jr CH, et al. Age-dependent lethality in novel transgenic mouse models of central nervous system arteriovenous malformations. Stroke. 2012;43(5):1432–5.

    Article  PubMed  Google Scholar 

  55. Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol. 2011;69(6):954–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, et al. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke. 2012;43(5):1240–6.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Chen W, Guo Y, Walker EJ, Shen F, Jun K, Oh SP, et al. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol. 2013;33(2):305–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Choi EJ, Walker EJ, Shen F, Oh SP, Arthur HM, Young WL, et al. Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc Dis. 2012;33(6):540–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chen W, Sun Z, Han Z, Jun K, Camus M, Wankhede M, et al. De novo cerebrovascular malformation in the adult mouse after endothelial alk1 deletion and angiogenic stimulation. Stroke. 2014;45(3):900–2.

    Article  PubMed  Google Scholar 

  60. Choi EJ, Chen W, Jun K, Arthur HM, Young WL, Su H. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One. 2014;9(2):e88511.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Bourdeau A, Dumont DJ, Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest. 1999;104(10):1343–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):1534–7.

    Article  CAS  PubMed  Google Scholar 

  63. Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.

    Article  CAS  PubMed  Google Scholar 

  64. Chen W, Guo Y, Bollen AW, Su H, Young WL. Reduced PDGFR-beta expression after regional Alk1 deletion and VEGF stimulation in the brain is associated with reduced mural cell coverage [Abstract]. Stroke. 2012;43(2-Meeting Abstracts):A3169.

  65. Chen W, Guo Y, Jun K, Wankhede M, Su H, Young WL. Alk1 deficiency impairs mural cell recruitment during brain angiogenesis [Abstract]. Stroke. 2013:44(2-Meeting Abstracts):ATMP118.

  66. Hashimoto T, Wu Y, Lawton MT, Yang GY, Barbaro NM, Young WL. Co-expression of angiogenic factors in brain arteriovenous malformations. Neurosurgery. 2005;56(5):1058–65.

    PubMed  Google Scholar 

  67. Hashimoto T, Lawton MT, Wen G, Yang GY, Chaly Jr T, Stewart CL, et al. Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery. 2004;54(2):410–23.

    Article  PubMed  Google Scholar 

  68. Hasan DM, Amans M, Tihan T, Hess C, Guo Y, Cha S, et al. Ferumoxytol-enhanced MRI to image inflammation within human brain arteriovenous malformations: a pilot investigation. Transl Stroke Res. 2012;3(1):166–73.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Mahmoud M, Allinson KR, Zhai Z, Oakenfull R, Ghandi P, Adams RH, et al. Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res. 2010;106(8):1425–33.

    Article  CAS  PubMed  Google Scholar 

  70. Bourdeau A, Cymerman U, Paquet ME, Meschino W, McKinnon WC, Guttmacher AE, et al. Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am J Pathol. 2000;156(3):911–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41(1):118–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA. Biallelic somatic and germline mutations in cerebral cavernous malformations (CCM): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet. 2009;18(5):919–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003;93(7):682–9.

    Article  CAS  PubMed  Google Scholar 

  74. Panchenko MP, Williams MC, Brody JS, Yu Q. Type I receptor serine-threonine kinase preferentially expressed in pulmonary blood vessels. Am J Physiol. 1996;270(4 Pt 1):L547–58.

    CAS  PubMed  Google Scholar 

  75. Chen Y, Zhu W, Bollen AW, Lawton MT, Barbaro NM, Dowd CF, et al. Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery. 2008;62(6):1340–9.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Torsney E, Charlton R, Diamond AG, Burn J, Soames JV, Arthur HM. Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation. 2003;107(12):1653–7.

    Article  PubMed  Google Scholar 

  77. Choi EJ, Walker EJ, Degos V, Jun K, Kuo R, Su H, et al. Endoglin deficiency in bone marrow is sufficient to cause cerebrovascular dysplasia in the adult mouse after vascular endothelial growth factor stimulation. Stroke. 2013;44(3):795–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Hao Q, Su H, Palmer D, Sun B, Gao P, Yang GY, et al. Bone marrow-derived cells contribute to vascular endothelial growth factor-induced angiogenesis in the adult mouse brain by supplying matrix metalloproteinase-9. Stroke. 2011;42(2):453–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. van Laake LW, van den Driesche S, Post S, Feijen A, Jansen MA, Driessens MH, et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation. 2006;114(21):2288–97.

    Article  PubMed  CAS  Google Scholar 

  80. Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 2011;123(8):866–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Post S, Smits AM, van den Broek AJ, Sluijter JP, Hoefer IE, Janssen BJ, et al. Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovasc Res. 2010;85(3):494–502.

    Article  CAS  PubMed  Google Scholar 

  82. Tang XN, Zheng Z, Yenari MA. Bone marrow chimeras in the study of experimental stroke. Transl Stroke Res. 2012;3(3):341–7.

    Article  PubMed  Google Scholar 

  83. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Outtz HH, Tattersall IW, Kofler NM, Steinbach N, Kitajewski J. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 2011;118(12):3436–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rafii S, Lyden D. Cancer. A few to flip the angiogenic switch. Science. 2008;319(5860):163–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319(5860):195–8.

    Article  CAS  PubMed  Google Scholar 

  87. Hao Q, Liu J, Pappu R, Su H, Rola R, Gabriel RA, et al. Contribution of bone marrow-derived cells associated with brain angiogenesis is primarily through leucocytes and macrophages. Arterioscler Thromb Vasc Biol. 2008;28(12):2151–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Gao P, Chen Y, Lawton MT, Barbaro NM, Yang GY, Su H, et al. Evidence of endothelial progenitor cells in the human brain and spinal cord arteriovenous malformations. Neurosurgery. 2010;67(4):1029–35.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Hao Q, Chen Y, Zhu Y, Fan Y, Palmer D, Su H, et al. Neutrophil depletion decreases VEGF-induced focal angiogenesis in the mature mouse brain. J Cereb Blood Flow Metab. 2007;27(11):1853–60.

    Article  CAS  PubMed  Google Scholar 

  90. Hashimoto T, Matsumoto M, Tsang EJ, Young WL. Critical roles of neutrophils and macrophages in flow-induced adaptive outward vascular remodeling [Abstract]. J Neurosurg Anesthesiol. 2006;18(4):293.

    Article  Google Scholar 

  91. Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke. 2004;35(10):2294–300.

    Article  CAS  PubMed  Google Scholar 

  92. Chen Y, Fan Y, Poon KY, Achrol AS, Lawton MT, Zhu Y, et al. MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci. 2006;11:3121–8.

    Article  CAS  PubMed  Google Scholar 

  93. Shenkar R, Shi C, Check IJ, Lipton HL, Awad IA. Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery. 2007;61(4):693–702.

    Article  PubMed  Google Scholar 

  94. Aziz MM, Takagi Y, Hashimoto N, Miyamoto S. Activation of nuclear factor κB in cerebral arteriovenous malformations. Neurosurgery. 2010;67(6):1669–80.

    Article  PubMed  Google Scholar 

  95. Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, et al. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain. 2013;136(Pt 2):665–81.

    Article  PubMed  Google Scholar 

  96. Nagase H, Meng Q, Malinovskii V, Huang W, Chung L, Bode W, et al. Engineering of selective TIMPs. Ann N Y Acad Sci. 1999;878:1–11.

    Article  CAS  PubMed  Google Scholar 

  97. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, et al. Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke. 2003;34(4):925–31.

    Article  CAS  PubMed  Google Scholar 

  98. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39(3):279–91.

    Article  PubMed  Google Scholar 

  99. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  100. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9.

    Article  CAS  PubMed  Google Scholar 

  101. Velasco S, Alvarez-Munoz P, Pericacho M, Dijke PT, Bernabeu C, Lopez-Novoa JM, et al. L- and S-endoglin differentially modulate TGFbeta1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. J Cell Sci. 2008;121(Pt 6):913–9.

    Article  CAS  PubMed  Google Scholar 

  102. Chen Y, Hao Q, Kim H, Su H, Letarte M, Karumanchi SA, et al. Soluble endoglin modulates aberrant cerebral vascular remodeling. Ann Neurol. 2009;66(1):19–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Velasco-Loyden G, Arribas J, Lopez-Casillas F. The shedding of betaglycan is regulated by pervanadate and mediated by membrane type matrix metalloprotease-1. J Biol Chem. 2004;279(9):7721–33.

    Article  CAS  PubMed  Google Scholar 

  104. Hashimoto T, Matsumoto M, Li JF, Lawton MT, Young WL. Suppression of MMP-9 by doxycycline in brain arteriovenous malformations. BMC Neurol. 2005;5(1):1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Chen Y, Pawlikowska L, Yao JS, Shen F, Zhai W, Achrol AS, et al. Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol. 2006;59(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  106. Cudmore M, Ahmad S, Al-Ani B, Fujisawa T, Coxall H, Chudasama K, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2007;115(13):1789–97.

    Article  CAS  PubMed  Google Scholar 

  107. Hosaka K, Hoh BL. Inflammation and cerebral aneurysms. Transl Stroke Res. 2014;5(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  108. Chalouhi N, Jabbour P, Magnotta V, Hasan D. Molecular imaging of cerebrovascular lesions. Transl Stroke Res. 2014;5(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  109. Chyatte D, Bruno G, Desai S, Todor DR. Inflammation and intracranial aneurysms. Neurosurgery. 1999;45(5):1137–46.

    Article  CAS  PubMed  Google Scholar 

  110. Starke RM, Raper DM, Ding D, Chalouhi N, Owens GK, Hasan DM, et al. Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture. Transl Stroke Res. 2013;5(2):269–77.

    Article  PubMed  CAS  Google Scholar 

  111. Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, Deogracias MP, et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation. 2005;112(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  112. Thompson S, Kim L, Scott A. Screening for abdominal aortic aneurysm: screening reduces deaths related to aneurysm. BMJ. 2005;330(7491):601.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Achrol AS, Kim H, Pawlikowska L, Poon KY, Ko NU, McCulloch CE, et al. Association of tumor necrosis factor-alpha-238G > A and apolipoprotein E2 polymorphisms with intracranial hemorrhage after brain arteriovenous malformation treatment. Neurosurgery. 2007;61(4):731–9.

    Article  PubMed  Google Scholar 

  114. Young WL, Kader A, Pile-Spellman J, Ornstein E, Stein BM. Columbia University AVM Study Project. Arteriovenous malformation draining vein physiology and determinants of transnidal pressure gradients. Neurosurgery. 1994;35(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  115. Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery. 2006;59(3):687–96.

    Article  PubMed  Google Scholar 

  116. Gao P, Zhu Y, Ling F, Shen F, Lee B, Gabriel RA, et al. Nonischemic cerebral venous hypertension promotes a pro-angiogenic state through HIF-1 downstream genes and leukocyte-derived MMP-9. J Cereb Blood Flow Metab. 2009;29(8):1482–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ Res. 2004;94(9):1179–85.

    Article  CAS  PubMed  Google Scholar 

  118. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 2001;20(17):4639–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Shyy JY, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol. 1997;9(5):707–13.

    Article  CAS  PubMed  Google Scholar 

  120. Shyy YJ, Hsieh HJ, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci U S A. 1994;91(11):4678–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 1998;31(1 Pt 2):162–9.

    Article  CAS  PubMed  Google Scholar 

  122. Malek AM, Gibbons GH, Dzau VJ, Izumo S. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest. 1993;92(4):2013–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.

    Article  CAS  PubMed  Google Scholar 

  124. Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL. Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. Acta Neurochir Suppl. 2011;111:83–92.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Cirulli A, Liso A, D'Ovidio F, Mestice A, Pasculli G, Gallitelli M, et al. Vascular endothelial growth factor serum levels are elevated in patients with hereditary hemorrhagic telangiectasia. Acta Haematol. 2003;110(1):29–32.

    Article  CAS  PubMed  Google Scholar 

  126. Sadick H, Naim R, Sadick M, Hormann K, Riedel F. Plasma level and tissue expression of angiogenic factors in patients with hereditary hemorrhagic telangiectasia. Int J Mol Med. 2005;15(4):591–6.

    CAS  PubMed  Google Scholar 

  127. Sadick H, Riedel F, Naim R, Goessler U, Hormann K, Hafner M, et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica. 2005;90(6):818–28.

    CAS  PubMed  Google Scholar 

  128. Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA. 2012;307(9):948–55.

    Article  CAS  PubMed  Google Scholar 

  129. Whitehead KJ, Chakinala M, Faughnan ME, Miller FJ, White Jr RI, Vethanayagam D, et al. Use of Bevacizumab in complicated HHT: North American HHT Center experience [Abstract]. Hematol Rep. 2011;3(s2):6.

    Google Scholar 

  130. Karnezis TT, Davidson TM. Efficacy of intranasal bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope. 2011;121(3):636–8.

    Article  CAS  PubMed  Google Scholar 

  131. Chen S, Karnezis T, Davidson TM. Safety of intranasal Bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope. 2011;121(3):644–6.

    Article  CAS  PubMed  Google Scholar 

  132. Rohrmeier C, Sachs HG, Kuehnel TS. A retrospective analysis of low dose, intranasal injected bevacizumab (Avastin) in hereditary haemorrhagic telangiectasia. Eur Arch Otorhinolaryngol. 2012;269(2):531–6.

    Article  CAS  PubMed  Google Scholar 

  133. Bose P, Holter JL, Selby GB. Bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med. 2009;360(20):2143–4.

    Article  CAS  PubMed  Google Scholar 

  134. Oosting S, Nagengast W, de Vries E. More on bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med. 2009;361(9):931.

    Article  CAS  PubMed  Google Scholar 

  135. Retornaz F, Rinaldi Y, Duvoux C. More on bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med. 2009;361(9):931.

    Article  CAS  PubMed  Google Scholar 

  136. Simonds J, Miller F, Mandel J, Davidson TM. The effect of bevacizumab (Avastin) treatment on epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope. 2009;119(5):988–92.

    Article  CAS  PubMed  Google Scholar 

  137. Walker EJ, Su H, Shen F, Degos V, Amend G, Jun K, et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke. 2012;43(7):1925–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Tanvetyanon T, Murtagh R, Bepler G. Rupture of a cerebral arteriovenous malformation in a patient treated with bevacizumab. J Thorac Oncol. 2009;4(2):268–9.

    Article  PubMed  Google Scholar 

  139. Lukason M, Dufresne E, Rubin H, Pechan P, Li Q, Kim I, et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther. 2011;19(2):260–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Maclachlan TK, Lukason M, Collins M, Munger R, Isenberger E, Rogers C, et al. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol Ther. 2011;19(2):326–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Mao L, Shen F, Chen W, Akinpelu B, Lawton MT, Young WL, et al. AAV-sFLT: a potential therapeutic agent for the treatment of brain angiogenic diseases [Abstract]. Stroke 2013;44(2-Meeting Abstracts):ATMP116.

  142. Frenzel T, Lee CZ, Kim H, Quinnine NJ, Hashimoto T, Lawton MT, et al. Feasibility of minocycline and doxycycline use as potential vasculostatic therapy for brain vascular malformations: pilot study of adverse events and tolerance. Cerebrovasc Dis. 2008;25(1–2):157–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med. 2010;16(4):420–8.

    Article  CAS  PubMed  Google Scholar 

  144. Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet. 2004;363(9423):1802–11.

    Article  CAS  PubMed  Google Scholar 

  145. Quach H, Kalff A, Spencer A. Lenalidomide in multiple myeloma: Current status and future potential. Am J Hematol. 2012;87(12):1089–95.

    Article  CAS  PubMed  Google Scholar 

  146. D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–5.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Aragon-Ching JB, Li H, Gardner ER, Figg WD. Thalidomide analogues as anticancer drugs. Recent Pat Anticancer Drug Discov. 2007;2(2):167–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Dredge K, Horsfall R, Robinson SP, Zhang LH, Lu L, Tang Y, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res. 2005;69(1–2):56–63.

    Article  CAS  PubMed  Google Scholar 

  150. Sure U, Battenberg E, Dempfle A, Tirakotai W, Bien S, Bertalanffy H. Hypoxia-inducible factor and vascular endothelial growth factor are expressed more frequently in embolized than in nonembolized cerebral arteriovenous malformations. Neurosurgery. 2004;55(3):663–9.

    Article  PubMed  Google Scholar 

  151. Lim M, Haddix T, Harsh GR, Vogel H, Steinberg GK, Guccione S. Characterization of the integrin alphavbeta3 in arteriovenous malformations and cavernous malformations. Cerebrovasc Dis. 2005;20(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  152. Achrol AS, Pawlikowska L, McCulloch CE, Poon KY, Ha C, Zaroff JG, et al. TNFa-238G > A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations [Abstract]. Stroke. 2006;37(2):638–9.

    Google Scholar 

  153. Kim H, Hysi PG, Pawlikowska L, Poon A, Burchard EG, Zaroff JG, et al. Common variants in interleukin-1-beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis. 2009;27(2):176–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci Meth. 2006;26(9):2467–73.

    Article  CAS  Google Scholar 

  155. Neymotin A, Petri S, Calingasan NY, Wille E, Schafer P, Stewart C, et al. Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2009;220(1):191–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Chen CH, Hsu HH, Hu RH, Lee PH, Ho CM. Long-term therapy with thalidomide in hereditary hemorrhagic Telangiectasia: case report and literature review. J Clin Pharmacol. 2012;52(9):1436–40.

    Article  CAS  PubMed  Google Scholar 

  157. Amanzada A, Toppler GJ, Cameron S, Schworer H, Ramadori G. A case report of a patient with hereditary hemorrhagic telangiectasia treated successively with thalidomide and bevacizumab. Case Rep Oncol. 2010;3(3):463–70.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Penaloza A, Vekemans MC, Lambert C, Hermans C. Deep vein thrombosis induced by thalidomide to control epistaxis secondary to hereditary haemorrhagic telangiectasia. Blood Coagul Fibrinolysis. 2011;22(7):616–8.

    Article  PubMed  Google Scholar 

  159. Alam MA, Sami S, Babu S. Successful treatment of bleeding gastro-intestinal angiodysplasia in hereditary haemorrhagic telangiectasia with thalidomide. BMJ Case Rep. 2011.

  160. Perez-Encinas M, Rabunal Martinez MJ, Bello Lopez JL. Is thalidomide effective for the treatment of gastrointestinal bleeding in hereditary hemorrhagic telangiectasia? Haematologica. 2002;87(8):ELT34.

    PubMed  Google Scholar 

  161. Gossage JR, Chamberlain SM, Sridhar S, Kumar A. An interim report of thalidomide for treatment of recurrent angioectasia related gastrointestinal bleeding [Abstract #PC10]. Hematol Meet Rep. 2009;3(4):21.

    Google Scholar 

  162. Georgia Health Sciences University. Thalidomide reduces arteriovenous malformation related gastrointestinal bleeding (TAG). NCT00389935. 2011. http://clinicaltrials.gov/ct2/show/NCT00389935?term=thalidomide+hht&rank=2. Accessed 20 Jun 2012.

  163. IRCCS Policlinico S. Matteo. Efficacy of thalidomide in the treatment of hereditary hemorrhagic telangiectasia (THALI-HHT). NCT01485224. 2011. http://clinicaltrials.gov/ct2/show/NCT01485224?term=thalidomide+hht&rank=1. Accessed 20 Jun 2012.

  164. Bowcock SJ, Patrick HE. Lenalidomide to control gastrointestinal bleeding in hereditary haemorrhagic telangiectasia: potential implications for angiodysplasias? Br J Haematol. 2009;146(2):220–2.

    Article  CAS  PubMed  Google Scholar 

  165. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96(23):13496–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke. 2002;33(3):831–6.

    Article  CAS  PubMed  Google Scholar 

  167. Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.

    Article  CAS  PubMed  Google Scholar 

  168. Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain. 2002;125(Pt 6):1297–308.

    Article  PubMed  Google Scholar 

  169. Bonelli RM, Heuberger C, Reisecker F. Minocycline for Huntington's disease: an open label study. Neurology. 2003;60(5):883–4.

    Article  PubMed  Google Scholar 

  170. Sanchez-Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery. 2001;48(6):1393–9.

    CAS  PubMed  Google Scholar 

  171. Curci JA, Mao D, Bohner DG, Allen BT, Rubin BG, Reilly JM, et al. Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Surg. 2000;31(2):325–42.

    Article  CAS  PubMed  Google Scholar 

  172. Axisa B, Loftus IM, Naylor AR, Goodall S, Jones L, Bell PR, et al. Prospective, randomized, double-blind trial investigating the effect of doxycycline on matrix metalloproteinase expression within atherosclerotic carotid plaques. Stroke. 2002;33(12):2858–64.

    Article  CAS  PubMed  Google Scholar 

  173. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett Jr JW, Kent KC, et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: Report of a prospective (Phase II) multicenter study. J Vasc Surg. 2002;36(1):1–12.

    Article  PubMed  Google Scholar 

  174. Hashimoto T, Matsumoto M, Yang GY, Lawton MT, Young WL. Suppression of MMP-9 by doxycycline in brain arteriovenous malformations [Abstract]. J Neurosurg Anesthesiol. 2004;16(4):333–4.

    Google Scholar 

  175. Lee CZ, Xu B, Hashimoto T, McCulloch CE, Yang GY, Young WL. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke. 2004;35(7):1715–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Voltaire Gungab for assistance with manuscript preparation and members of the UCSF BAVM Study Project (http://avm.ucsf.edu) for their support. The principal investigator, Hua Su, is supported by grants from the National Institutes of Health (R01 NS027713 and P01 NS044155).

Compliance with Ethics Requirements

This review article does not contain any studies with human or animal subjects. All cited studies describe ethical standards in cited manuscripts.

Conflict of Interest

Wanqiu Chen, Eun-Jung Choi, Cameron M. McDougall, and Hua Su declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Su.

Additional information

Wanqiu Chen and Eun-Jung Choi contributed equally to this review.

This article is dedicated in memory of our collaborator and mentor William L. Young, MD, for his seminal contributions to brain AVM research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Choi, EJ., McDougall, C.M. et al. Brain Arteriovenous Malformation Modeling, Pathogenesis, and Novel Therapeutic Targets. Transl. Stroke Res. 5, 316–329 (2014). https://doi.org/10.1007/s12975-014-0343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0343-0

Keywords

Navigation