Skip to main content

Advertisement

Log in

Effectiveness of Rhizobium inoculation on common bean productivity as determined by inherent soil fertility status

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Field experiments at Haramaya, Hirna, Fedis, and Babillae sites were conducted to evaluate the effectiveness of selected isolates of rhizobia on the common bean production using eight selected isolates of rhizobia with a control check and N fertilized (20 kg N ha-1) treatments. The treatment was laid out in a randomized complete block design with three replications and three common bean varieties (Kufanzik, Gofta, and Dursitu).Analysis of variance revealed that inoculation, common bean varieties and their interaction significantly influenced most of the investigated yield and yield traits of common bean. Most of the tested Rhizobium isolates significantly increased the nodule number (NN) and nodule dry weight (NDW) as compared to the control check. Of the tested isolates, a higher number remarkably improved the remaining investigated traits in Hirna and Haramaya sites when compared to the Fedis and Babillae sites. In the Babillae site, N fertilization resulted in the highest NDW, total biomass yield (TBY), and grain yield (GY) of common bean. The GY increases due to inoculation of NSCBR-14 at Haramaya and Hirna sites, N fertilization at Babillae and NSCBR-31 at the Fedis site were 775.5, 609.7, 506.3, and 400.9 kg ha-1 over the uninoculated treatments of the corresponding experimental sites, respectively. The highest NN, NDW, and plant N concentration was recorded with Dursitu while the highest GY and TBY were obtained from Kufanzik. Therefore, inherent soil fertility and the prevailed environmental factors affect the effectiveness of the inoculated isolates in enhancing common bean production in the study sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari PG, Rao DLN. 2014. Soybean rhizobia in Indian soils: Populations, host specificity and competitiveness. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84(3): 457–464

    Article  Google Scholar 

  • Anteneh Argaw. 2007. Symbiotic and phenotypic characterization of rhizobia nodulating common bean (Phaseolus vulgaris L.) from Eastern Ethiopia. MSc. Thesis, Addis Ababa University, Addis Ababa, Ethiopia

    Google Scholar 

  • Anteneh Argaw, Eyasu Mekonnen, Daniel Muleta. 2015. Agronomic efficiency of N of common bean (Phaseolus vulgaris L.) in some representative soils of Eastern Ethiopia. Cogent Food Agri. 1: 1074790

    Google Scholar 

  • Asadi-Rahmani H, Rasanen LA, Afshari M, Lindstrom K. 2011. Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris grown in soil of Iran. Appl. Soil Ecol. 48: 287–293

    Article  Google Scholar 

  • Bakhoum N, Odee DW, Fall D, Ndoye F, Kane A, Kimiti JM, Zoubeirou AM, Sylla SN, Noba K, Diouf D. 2016. Senegalia Senegal response to inoculation with rhizobial strains vary in relation to seed provenance and soil type. Plant Soil 398: 181–193

    Article  CAS  Google Scholar 

  • Batista L, Irisarri P, Rebuffo M, Cuitiño MJ, Sanjuán J, Monza J. 2015. Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pretense. Biol.Fert. Soil 51: 11–20

    Article  Google Scholar 

  • Bliss FA. 1993. Utilizing the potential for increased nitrogen fi xation in common bean. Plant Soil 152: 157–160

    Article  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE. 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant Soil 65: 143–180

    Article  Google Scholar 

  • Brutti L, Piantanida N, Ljunggren H, Berggren I, Martensson A. 1999. Competition between strains of Bradyrhizobium japonicum for nodulation of soybeans in Argentine arable soils. Appl. Soil Ecol. 12: 1–6

    Article  Google Scholar 

  • Buttery BR, Park SJ, Hume DJ. 1992. Potential for increasing nitrogen fixation in grain legumes. Can. J. Plant Sci. 72: 323–349

    Article  CAS  Google Scholar 

  • Buttery BR, Park SJ, van Berkum P. 1997. Effects of common bean (Phaseolus vulgaris L.) cultivar and Rhizobium strain on plant growth, seed yield and nitrogen content. Can. J. Plant Sci. 77: 347–351

    Article  Google Scholar 

  • Dakora FD, Keya SO. 1997. Contribution of legume nitrogen fixation to sustainable agriculture in sub-Saharan Africa. Soil Biol. Biochem. 29: 809–817

    Article  CAS  Google Scholar 

  • De Oliveira WS, Meinhardt LW, Sessitsch A, Tsai SM. 1998. Analysis of Phaseolus-Rhizobium interactions in a subsistence farming system. Plant Soil. 204: 107–115

    Article  CAS  Google Scholar 

  • Fageria NK. 2014. Growth, nutrient uptake, and use efficiency in dry bean in tropical upland soil. J. Plant Nutr. 37: 2085–2093

    Article  CAS  Google Scholar 

  • Fageria NK, Santos AB. 2008. Yield Physiology of Dry Bean. J. Plant Nutr. 31: 983–1004

    Article  CAS  Google Scholar 

  • Fageria NK, dos Santos AB, Moreira A. 2010. Yield, nutrient uptake, and changes in soil chemical properties as influenced by liming and iron application in common bean in a no-tillage system. Commun. Soil Sci. Plan. 41: 1740–1749

    Article  CAS  Google Scholar 

  • Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M. 2000. Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol. Biochem. 32: 627–637

    Article  CAS  Google Scholar 

  • Furseth BJ, Conley SP, Ané JM. 2012. Soybean Response to Soil Rhizobia and Seed-applied Rhizobia Inoculants in Wisconsin. Crop Sci. 52: 339–344

    Article  Google Scholar 

  • Gan YT, Warkentin TD, McDonald CL, Zentner RP, Vandenberg A. 2009a. Seed yield and yield stability of chickpea in response to cropping systems and soil fertility in northern latitudes. Agron. J. 101: 1113–1122

    Article  Google Scholar 

  • Gan YT, Campbell CA, Janzen HH, Lemke RL, Basnyat P, McDonald CL. 2009b. Carbon input to soil from oilseed and pulse crops on the Canadian prairies. Agr. Ecosyst. Environ. 132: 290–297

    Article  CAS  Google Scholar 

  • García JAL, Probanza A, Ramos B, Barriuso J, Mañero FJG. 2004. Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267: 143–153

    Article  Google Scholar 

  • García-Orenes F, Roldán A, Morugán-Coronado A, Linares C, Cerdà A, Caravaca F. 2016. Organic fertilization in traditional mediterranean grapevine orchards mediates changes in soil microbial community structure and enhances soil fertility. Land Degrad. Dev. DOI: 10.1002/ldr.2496

    Google Scholar 

  • Gates CT, Muller WJ. 1979. Nodule and plant development in the soyabean, Glycine max (L.) Merr.: Growth response to nitrogen, phosphorus and sulfur. Aust. J. Bot. 27(3): 203–215

    Article  CAS  Google Scholar 

  • Giongo A, Passaglia LMP, Freire JRJ, de Sa´ ELS. 2007. Genetic diversity and symbiotic efficiency of population of rhizobia of Phaseolus vulgaris L. in Brazil. Biol. Fertil. Soils 43: 593–598

    Article  Google Scholar 

  • Graham PH. 1981. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res. 4: 93–112

    Article  Google Scholar 

  • Graham PH. 1992. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol. 38: 475–484

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP. 2000. Nitrogen fixation in perspective: An overview of research and extension needs. Field Crops Res. 65: 93–106

    Article  Google Scholar 

  • Hungria M, Andrabe DS, Chuire LM, de O, Agustin P, Francisco JGM, Megias M. 2000. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem. 32: 1515–1528

    Article  CAS  Google Scholar 

  • Hungria M, Vargas MAT. 2000. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res. 65: 151–164

    Article  Google Scholar 

  • Hungria M, Vargas MAT, Araujo RS. 1997. Fixaçaobiologica do nitrogenioemfeijoeiro. In: MAT Vargas, M Hungria (eds), Biologia dos solos dos cerrados. EMBRAPA-CPAC, Planaltina. pp 189–295

    Google Scholar 

  • Jensen ES. 1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil. 182: 25–38

    Article  CAS  Google Scholar 

  • Karasu A, Oz M, Dogan R. 2011. The effect of bacterial inoculation and different nitrogen doses on yield and yield components of some dwarf dry bean cultivars (Phaseolus vulgaris L.). Bulg. J. Agri. Sci. 17: 296–305

    Google Scholar 

  • Kurdali F, Al-Ain F, Al-Shamma M. 2002. Nodulation, dry matter production, and N2 fixation by fababean and chickpea as affected by soil moisture and potassium fertilizer. J. Plant Nutr. 25: 355–368

    Article  CAS  Google Scholar 

  • Kyei-Boahen S, Nleya T, Hynes R, Walley FL. 2005. Single and multistrain rhizobial inocula for pinto and black bean cultivars. J. Plant Nutr. 28: 1679–1692

    Article  CAS  Google Scholar 

  • Lynd JG, Ansman TR. 1989. Effects of P, Ca with four K levels on nodule histology, nitrogenase activity and improved ‘spanco’ peanut yields. J. Plant Nutr. 12: 65–84

    Article  CAS  Google Scholar 

  • Mandri B, Drevon JJ, Bargaz A, Oufdou K, Faghire M, Plassard C, Payre H, Ghoulam C. 2012. Interactions between common bean varieties and rhizobia strains isolated from Moroccan soils for growth, phosphatase and phytase activities under phosphorus deficiency conditions. J. Plant Nutr. 35: 1477–1490

    Article  CAS  Google Scholar 

  • Mete FZ, Mia S, Dijkstra FA, Abuyusuf Md., Hossain ASMI. 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere 25(5): 713–719

    Article  Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J. 1998. Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol. Ecol. 26: 193–205

    Article  CAS  Google Scholar 

  • Miller PR, Gan Y, McConkey BG, McDonald CL. 2003. Pulse crops for the northern Great Plains: I. Grain productivity and residual effects on soil water and nitrogen. Agron. J. 95: 972–979

    Article  Google Scholar 

  • Mulas D, Seco V, Casquero PA, Velázquez E, González-Andrés F. 2015. Inoculation with indigenous Rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system. Symbiosis 67: 113–124

    Article  CAS  Google Scholar 

  • Munns DN. 1977. Mineral nutrition and the legume symbioses. In Hardy RWF, Gibson AH, eds, A Treatise on Dinitrogen Fixation. Section iv. John Wiley and Sons, New York. USA, pp 353–391

    Google Scholar 

  • Ndakidemi PA, Dakora FD, Nkonya EM, Ringo D, Mansoor H. 2006. Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust. J. Exp. Agr. 46: 571–577

    Article  Google Scholar 

  • Nleya T, Walley FL, Vandenberg A. 2009. Response of determinate and indeterminate common bean varieties to Rhizobium inoculant in a short season rainfed production system in the Canadian prairie. J. Plant Nutr. 32: 44–57

    Article  CAS  Google Scholar 

  • O'Hara GW. 2001. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: Areview. Aust. J. Exp. Agr. 41(3): 417–433

    Article  Google Scholar 

  • Park SJ, Buttery BR. 1989. Identification and characterization of common bean (Phaseolus vulgaris L.) lines well nodulated in the presence of high nitrate. Plant Soil 119: 237–244

    Article  Google Scholar 

  • Peoples MB, Brockwell J, Hunt JR, Swan AD, Watson L, Hayes RC, Li GD, Hackney B, Nuttall JG, Davies SL, Fillery IRP. 2013. Factors affecting the potential contributions of N2 fixation by legumes in Australian pasture systems. Crop Pasture Sci. 63(9): 759–786

    Article  Google Scholar 

  • Ramos MLG, Boddey RM. 1987. Yield and nodulation of Phaseolus vulgaris and the competitivity of an introduced Rhizobium strain: effects of lime, mulch and repeated cropping Soil Biol. Biochem. 19: 171–177

    Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Galvez L, Vanderleyden J. 2008. Effect of Rhizobium/Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. varieties cultivated across different environments in Cuba. Plant Soil. 312: 25–37

    Article  CAS  Google Scholar 

  • Rennie RJ, Kemp GA. 1983. N2-fixation in field beans quantified by N isotope dilution. II. Effects of cultivars of beans. Agron. J. 75: 645–649

    Article  CAS  Google Scholar 

  • Rodiño AP, Fuente MDL, De Ron AM, Lema MJ, Drevon JJ, Santalla M. 2011. Variation for nodulation and plant yield of common bean varieties and environmental effects on the variety expression. Plant Soil. 346: 349–361

    Article  Google Scholar 

  • Ronner E, Franke AC, Vanlauwe B, Dianda M, Edeh E, Ukem B, Bala A, van Heerwaarden J, Giller KE. 2016. Understanding variability in soybean yield and response to P-fertilizer and Rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crops Res. 186: 133–145

    Article  Google Scholar 

  • Rosas JC, Castro JA, Robleto EA, Handelsman J. 1998. A method for screening Phaseolus vulgaris L. germplasm for preferential nodulation with a selected Rhizobium etli strain. Plant Soil. 203: 71–78

    Article  CAS  Google Scholar 

  • Russo VM, Perkins-Vezie P. 1992. Cultural practices affecting yield and nutrient content of dry bean. J. Prod. Agric. 5: 323–327

    Article  Google Scholar 

  • Rys J, Bonish PM. 1981. Effectiveness of Rhizobium trifolii populations associated with Trifolium species in Taranaki. New Zeal. J. Exp. Agr. 9: 329–335

    Article  Google Scholar 

  • Salinas JG. 1978. Differential response of some cereal and bean cultivar to Al and P stress in an oxisol of central Brasil. Ph.D. Dissertation, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Sanchez PA. 2002. Soil fertility and hunger in Africa. Sci. 295: 2019–2020

    Article  CAS  Google Scholar 

  • Shamseldin AAY, Vinuesa P, Thierfelder H, Werner D. 2005. Rhizobium etli and Rhizobium gallicum nodulate Phaseolus vulgaris in Egyptian soils and display cultivar-dependent symbiotic efficiency. Symbiosis 38: 145–161

    CAS  Google Scholar 

  • Silva JA, Uchida R. 2000. Biological nitrogen fixation nature’s partnership for sustainable agricultural production. Plant Nutrient Management in Hawaii’s Soils, Approaches for Trop. Subtrop. Agric. College of Trop. Agric. Human Resour. Univ. Hawaii at Manoa

    Google Scholar 

  • Singh, SP, Urrea CA, Gutierrez JA, Garcia I. 1989. Selection for yield at two fertilizer levels in small seeded common bean. Can. J. Plant Sci. 69: 1011–1017

    Article  Google Scholar 

  • Slattery JF, Coventry DR, Slattery WJ. 2001. Rhizobial ecology as affected by the soil environment. Aust. J. Exp. Agr. 41(3): 289–298

    Article  CAS  Google Scholar 

  • Smaling E, Nandwa SM, Janssen BH. 1997. Soil fertility in Africa is at stake. In: RJ Buresh, PA Sanchez, F Calhoun, eds, Replenishing Soil Fertility in Africa. SSSA, American Society of Agronomy, Madison, WI, pp 47–61

    Google Scholar 

  • Smith FW. 1982. Mineral nutrition of legumes. In JM Vincent, ed, Nitrogen Fixation in Legumes. Academic Press. Sydney. Australia. pp 155–172

    Google Scholar 

  • Ssali H. 1988. Rhizobium phaseoli inoculation trials on farmers’ fields in Kenya. E. Afr. Agr. Forestry J. 53: 151–157

    Google Scholar 

  • Stoorvogel JJ, Smaling EMA. 1998. Research on soil fertility decline in tropical environments: integration of spatial scales. Nutr.Cycl. Agroecosys. 50: 151–158

    Article  Google Scholar 

  • Sundstrom FJ, Neal JL, Morse RD, Bender DA. 1983. The effect of delayed inoculation on nitrogen fixation by Phaseolus vulgaris L. Grown in mine soil. Commun. Soil Sci. Plan. 14: 15–27

    Article  CAS  Google Scholar 

  • Tajini F, Drevon JJ, Lamouchi L, Aouani ME, Trabelsi M. 2008. Response of common bean lines to inoculation: comparison between the Rhizobium tropici CIAT899 and the native Rhizobium etli 12a3 and their persistence in Tunisian soils. World J. Microbiol. Biotechnol. 24: 407–417

    Article  Google Scholar 

  • Thung M. 1990. Phosphorus: A limiting nutrient in bean production in Latin America and field screening for efficiency and response. In: NEI Bassam, ed, Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publisher, Dordrecht, Netherlands, pp 501–521

    Chapter  Google Scholar 

  • Tsai SM, Bonetti R, Agbala SM, Rossetto R. 1993. Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant Soil. 152: 131–138

    Article  Google Scholar 

  • VanKessel C, Hartely C. 2000. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation. Field Crops Res. 65: 165–181

    Article  Google Scholar 

  • Vargas MAT, Graham PH. 1989. Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant Soil 115: 197–200

    Google Scholar 

  • Vieira RF. 1994. Effects of rhizobial inoculation, N and Mo applications on the nitrogen nutrition of common bean (Phaseolus vulgaris L.). Dr. Dissertation, ESALQ/USP-Piracicaba–SP, pp 189

    Google Scholar 

  • Walley FL, Kyei-Boahen S, Hnatowich G, Stevenson C. 2005. Nitrogen and phosphorus fertilizer management for desi and kabuli chickpea. Can. J. Plant Sci. 85: 73–79

    Article  Google Scholar 

  • Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A. 2015. The diversity of pea microsymbionts in various types of soils and their effects on plant host productivity. Microbes. Environ. 30(3): 254–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A. 2010. Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J. Plant Nutr. 33: 1733–1743

    Article  CAS  Google Scholar 

  • Sanchez PA, Swaminathan MS. 2005. Hunger in Africa: the link between unhealthy people and unhealthy soils. Millennium Project. 365: 442–444

    Google Scholar 

  • Yan X, Bebe SE, Lynch JP. 1995. Genetic variation for phosphorous efficiency of common bean in contrasting soil types. II. Yield Response. Crop Sci. 35: 1094–1099

    Article  Google Scholar 

  • Zahra MK, Monib MS, Abdel-Al I, Heggo A. 1984. Significance of soil inoculation with silicate bacteria. Zentralbl. fur Mikrobiol. 139: 349–357

    CAS  Google Scholar 

  • Zeng Z, Chen W, Hu Y, Sui X, Chen D. 2007. Screening of highly effective Sinorhizobium meliloti strains for ‘Vector’ alfalfa and testing of its competitive nodulation ability in the field. Pedosphere. 17: 219–228

    Article  CAS  Google Scholar 

  • Zwieten LV, Rose T, Herridge D, Kimber S, Rust J, Cowie A, Morris S. 2015. Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil. 395: 7–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anteneh Argaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argaw, A. Effectiveness of Rhizobium inoculation on common bean productivity as determined by inherent soil fertility status. J. Crop Sci. Biotechnol. 19, 311–322 (2016). https://doi.org/10.1007/s12892-016-0074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-016-0074-8

Key words

Navigation