Skip to main content
Log in

Soybean Rhizobia in Indian Soils: Populations, Host Specificity and Competitiveness

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Soybean is the most important of crop legumes with the highest share of production and source of biologically fixed nitrogen. Indigenous soybean rhizobia in Vertisols of Central India and other soils were assessed for cross nodulation, bacteriocin production and competitiveness. Survey of rhizobial populations in the rhizosphere of post-summer rainy season soybean revealed low number; the most probable number by plant infection test ranged from 0.5 to 3.3 × 103 cells g−1 soil but improved in the rhizosphere of cool season chickpea as 3.6–9.6 × 103 cells g−1. Soybean was nodulated by its native slow and fast growing rhizobia as well as by chickpea rhizobia. However soybean rhizobia did not nodulate crops belonging to four other cross inoculation groups-alfalfa (Trigonella), clover, pea, chickpea but nodulated Vigna (cowpea). Nodule occupancy by three indigenous nod+ nif+ Bradyrhizobium sp. R33 and R35 and Rhizobium R51 varied from 52 to 68 % of which only one-R33 was a strong bacteriocin producer while the other two were not. The results are important for rhizobial strain selection for biofertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO (2011) Current world fertilizer trends and outlook to 2015. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  2. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  3. Rupela OP, Toomasan B, Mittal S, Dart PJ, Thomson JA (1987) Chickpea Rhizobium populations: survey of influence of season, soil depth and cropping pattern. Soil Biol Biochem 19:247–252

    Article  Google Scholar 

  4. Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Ann Rev Microbiol 40:131–157

    Article  CAS  Google Scholar 

  5. McLoughlin TJ, Hearn S, Alt SG (1990) Competition for nodule occupancy of introduced Bradyrhizobium japonicum strains in a Wisconsin soil with a low indigenous bradyrhizobia population. Can J Microbiol 36:839–845

    Article  Google Scholar 

  6. George T, Bohlool BB, Singleton PW (1987) Bradyrhizobium japonicum-environment interactions: nodulation and inter strain competition in soils along an elevational transect. Appl Environ Microbiol 53:1113–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Nishi CYM, Boddey LH, Vargas MAT, Hungria M (1996) Morphological, physiological and genetic characterization of two new Bradyrhizobium strains recommended as Brazilian commercial inoculants for the soybean. Symbiosis 20:147–162

    CAS  Google Scholar 

  8. Tagg JR, Dajani AS, Wannanaker LW (1976) Bacteriocins of gram positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Schwinghamer EA, Reinhardt DJ (1963) Lysogeny in Rhizobium leguminosarum and R. trifolii. Aust J Biol Sci 16:597–605

    Google Scholar 

  10. Hodgson ALM, Roberts WP, Waid JS (1985) Regulated nodulation of Trifolium subterraneum inoculated with bacteriocin-producing strains of Rhizobium trifolii. Soil Biol Biochem 17:475–478

    Article  Google Scholar 

  11. Triplett EW (1990) Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol 56:98–103

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chamber MA, Iruthayathas EE (1988) Nodulation and nitrogen fixation by fast- and slow-growing rhizobia strains of soybean on several temperate and tropical legumes. Plant Soil 112:239–245

    Article  Google Scholar 

  13. Satya Prakash C, Annapurna K (2006) Diversity of soybean bradyrhizobial population adapted to an Indian soil. J Plant Biochem Biotechnol 15:27–32

    Article  Google Scholar 

  14. Annapurna K, Balakrishnan N, Vital L (2007) Verification and rapid identification of soybean rhizobia in Indian soils. Curr Microbiol 54:287–291

    Article  CAS  PubMed  Google Scholar 

  15. Yang JK, Zhou JC (2008) Diversity, phylogeny and host specificity of soybean and peanut bradyrhizobia. Biol Fertil Soils 44:843–851

    Article  Google Scholar 

  16. Lindstrom K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 16:453–463

    Article  Google Scholar 

  17. Barcellos FG, Meena P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Galli-Terasawa LV, Glienke-Blanco C, Hungria M (2003) Diversity of a soybean rhizobial population adapted to a cerrados soil. World J Micro Biotech 19:933–939

    Article  CAS  Google Scholar 

  19. Appunu C, Angele N, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hesse PR (1971) A textbook of soil chemical analysis. John Murray, London

    Google Scholar 

  21. Somasegaran P, Hoben HJ (1994) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer, New York

    Book  Google Scholar 

  22. Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  23. Gross DC, Vidaver AK (1978) Bacteriocin-like substances produced by Rhizobium japonicum and other slow-growing rhizobia. Appl Environ Microbiol 36:936–943

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Woomer P, Singleton PW, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54:1112–1116

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Thies JE, Singleton PW, Bohlool BB (1991) Modeling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil. Appl Environ Microbiol 57:29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Raverkar KP, Ajay, Gupta SB, Rao DLN (2005) Survival of soybean rhizobia in summer and proliferation during monsoon in Vertisols of central India. J Indian Soc Soil Sci 53:591–597

    Google Scholar 

  27. Rawat AK, Khatik SK, Rao DLN, Saxena AK (2008) Soybean rhizobial inoculants survey in Madhya Pradesh. All India Network Project on Biofertilizers, Bulletin, Jawahar Lal Nehru Krishi Vishwa Vidyalaya, Jabalpur, p 32

  28. Kumar D, Shivay YS, Dhar S, Kumar C, Prasad R (2013) Rhizospheric flora and the influence of agronomic practices on them—a review. Proc Natl Acad Sci India Sect B Biol Sci 83(1):1–14

    Article  Google Scholar 

  29. Gillette WK, Elkan GH (1996) Bradyrhizobium (Arachis) sp. strain NC92 contains two nod genes involved in the repression of nodA and a nolA gene required for the efficient nodulation of host plants. J Bacteriol 178:2757–2766

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Gaur YD, Sen AN (1979) Cross inoculation group specificity in Cicer-Rhizobium symbiosis. New Phytol 83:745–754

    Article  Google Scholar 

  31. Berg RK, Loynachan TE, Zablotowicz RM, Lieberman MT (1988) Nodule occupancy by introduced Bradyrhizobium japonicum in Iowa soils. Agron J 80:876–881

    Article  Google Scholar 

  32. Ham GE (1980) Inoculation of legumes with Rhizobium in competition with naturalized strains. In: Newton WE, Orme-Johnson WH (eds) Nitrogen fixation, vol II. Univ. Park Press, Baltimore, pp 131–138

    Google Scholar 

  33. Date RA (2000) Inoculating legumes in cropping systems of the tropics. Field Crop Res 65:123–136

    Article  Google Scholar 

  34. Triplett EW, Barta TM (1987) Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv trifolii strain T24 on clover. Plant Physiol 85:335–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Goel AK, Sindhu SS, Dadarwal KR (1999) Bacteriocin-producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol Res 154:43–48

    Article  CAS  Google Scholar 

  36. Nirmala J, Gaur YD, Lawrence PK (2001) Isolation and characterization of a bacteriocin produced by Cicer-Rhizobium. World J Microbiol Biotechnol 17:795–799

    Article  CAS  Google Scholar 

  37. Minamisawa K, Nakatsuka Y, Isawa T (1999) Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSα and RSβ. FEMS Microbiol Ecol 29:171–178

    CAS  Google Scholar 

  38. Brockwell J, Gault RR, Zorin M, Roberts MJ (1982) Effects of environmental variables on the competition between inoculum strains and naturalised populations of Rhizobium trifolii for nodulation of Trifolium subterraneum L. and on rhizobia persistence in the soil. Aust J Agric Res 33:803–815

    Article  Google Scholar 

  39. Saeki Y, Ozumi S, Yamamoto A, Umehara Y, Hayashi M, Sigua GC (2010) Changes in population occupancy of bradyrhizobia under different temperature regimes. Microbes Environ 25:309–312

    Article  PubMed  Google Scholar 

  40. Qi WJ, He DH, Xia ZJ, Dai MX (2012) Research on biological characteristics and genetic diversity of rhizobia of Glycine soja in the yellow river delta. Shandong Sci 25:32–37

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Indian Council of Agricultural Research, New Delhi for funding this investigation under the network project on ‘Application of Microorganisms in Agriculture and Allied sectors’ (AMAAS) of the National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, U.P. India. They are grateful to Director, IISS, Bhopal for providing the facilities for this investigation.

Conflict of interest

The authors declare that they have no conflict of interest with the funding organization, National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. N. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, P.G., Rao, D.L.N. Soybean Rhizobia in Indian Soils: Populations, Host Specificity and Competitiveness. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 457–464 (2014). https://doi.org/10.1007/s40011-013-0248-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0248-9

Keywords

Navigation