Skip to main content
Log in

Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops grown in India and worldwide. This oilseed crop has high nutritional value due to the presence of antioxidants such as lignans and tocopherols. Screening of oilseed germplasm for important nutritional attributes is of prime importance in quality breeding programs. In the present study, the content of lignans (sesamin and sesamolin) and tocopherol homologues (α-, γ-, and δ-tocopherol) was determined using reverse phase HPLC (RP-HPLC) in 143 sesame lines collected from diverse agro-ecological zones of India. Exploitable levels of sesamin, sesamolin, γ-, and δ-tocopherol was observed in the studied sesame lines. Sesamum indicum cultivar CO 1, introgressed line MKN 9, and Sesamum malabaricum showed high values for sesamin. Exotic and indigenous accessions of S. indicum (EC 542283 and IC 132176, IC 204681, IC 204773) showed high sesamolin contents. Cultivars, AKT 64, AKT 101, Phule til 1, and Tapi A showed high values for γ- and δ-tocopherol. The average content of sesamin and sesamolin was 0.86 and 0.50 mg g−1 seed, respectively. The average tocopherol content (292 μg g−1 seed) found in this study indicates the presence of a high amount of tocopherol in Indian sesame germplasm. Superior genotypes of sesame reported in this study could be utilized in sesame breeding programs for enhancing oil yield and nutritional attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedigian D. 2003. Evolution of Sesame revisited: domestication, diversity and prospects. Genet. Resour. Crop Evol. 50: 779–787

    Article  CAS  Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S. 1999. Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110: 21–33

    Article  CAS  Google Scholar 

  • Cheng FC, Jinn TR, Hou RCW, Tzen JTC. 2006. Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. Int. J. Biomed. Sci. 2: 284–288

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dellapenna D. 2005. Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci. 10: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Dixit A, Jin MH, Chung JW, Yu JW, Chung HK, Ma KH, Park YJ, Cho EG. 2005. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol. Ecol. Notes 5: 736–738

    Article  CAS  Google Scholar 

  • Fath A, Bethke P, Beligni V, Jones R. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53: 1273–1282

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT. 2011. Food and Agricultural Organization of the United Nations. Statistical Database. http://faostat.fao.org/

    Google Scholar 

  • Fukuda Y, Osawa T, Namiki M, Saki T. 1985. Studies on antioxidative substances in Sesame. Agric. Biol. Chem. 49:301–306

    Article  CAS  Google Scholar 

  • Hassapidou MN, Manoukas AG. 1993. Tocopherol and tocotrienol compositions of raw table olive fruit. J. Sci. Food Agric. 61: 277–280

    Article  CAS  Google Scholar 

  • Hemalatha S, Ghafoorunissa. 2004. Lignans and tocopherols in Indian sesame cultivars. J. Am. Oil Chem. Soc. 81: 467–470

    Article  CAS  Google Scholar 

  • Hsu DZ, Su SB, Chien SP, Chiang PJ, Li YH, Lo YJ, Liu MY. 2005. Effect of sesame oil on oxidative stress associated renal injury in endotoxemic rats: involvement of nitric oxide and proinflammatory cytokines. Shock 24: 276–280

    Article  PubMed  CAS  Google Scholar 

  • Kamal-Eldin A, Appelquist LA. 1994. Variations in the com positions of sterols, tocopherols and lignans in seed oils from four Sesamum species. J. Am. Oil Chem. Soc. 71: 149–156

    Article  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701

    Article  PubMed  CAS  Google Scholar 

  • Lakhanpaul S, Singh V, Kumar S, Bhardwaj D, Bhat KV, Tuteja N, Gill SS, Tiburcio AF, Tuteja R. 2012. Sesame: Overcoming the abiotic stresses in the queen of oilseed crops in improving crop resistance to abiotic stress. In Tuteja N, Singh S, Tiburcio AF, Tuteja R, eds, Improving Crop resistance to Abiotic Stress, Vol I and II, John Wiley & Sons, 1251–1283

    Article  Google Scholar 

  • Moazzami AA, Kamal-Eldin A. 2006. Sesame seed is a rich source of dietary lignans. J. Am. Oil Chem. Soc. 83: 719–723

    Article  CAS  Google Scholar 

  • Mondal N, Bhat KV, Srivastava PS. 2010. Variation in fatty acid composition in Indian germplasm of sesame. J. Am. Oil Chem. Soc. 87: 1263–1269

    Article  CAS  Google Scholar 

  • Nakano D, Kurumazuka D, Nagai Y, Nishiyama A, Kiso Y, Matsumura Y. 2008. Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin. Exp. Pharmacol. Physiol. 35: 324–326

    Article  PubMed  CAS  Google Scholar 

  • Namiki M. 1995. The chemistry and physiological function of sesame. Food Rev. Int. 11: 281–329

    Article  CAS  Google Scholar 

  • Nonaka M, Yamashita K, Izuka Y, Namiki M. 1997. Effects of sesaminol and sesamin on eicosanoid production and immunoglobulin level in rats given ethanol. Biosci. Biotechnol. Biochem. 61: 836–839

    Article  PubMed  CAS  Google Scholar 

  • Olcott HS, Emerson OH. 1937. Antioxidants and the autooxidation of fats. IX. The antioxidant properties of toco pherols. J. Am. Oil Chem. Soc. 59: 1008–1009

    Article  CAS  Google Scholar 

  • Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, et al. 2006. Formation of two methylenedioxy bridges by a Sesamum CYP81Q1 protein yielding a furofuran lig nan, (+)-sesamin. Proc. Nat. Acad. Sci. USA, 103: 10116–10121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Osawa T, Nagata M, Namiki M, Fukuda Y. 1985. Sesamolinol, a novel antioxidant isolated from sesame seeds. Agric. Biol. Chem. 49: 3351–3352

    Article  CAS  Google Scholar 

  • Rangkadilok N, Pholphana N, Mahidol C, Wongyai W, Saengsooksree S, Nookabkaew S, Satayavivad J. 2010. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chem. 122: 724–730

    Article  CAS  Google Scholar 

  • Saha S, Walia S, Kundu A, Pathak N. 2013. Influence of mobile phase on the resolution of isomers and homologues of tocopherols on a triacontyl stationary phase. Anal. Bioanal. Chem. 405: 9285–9295

    Article  PubMed  CAS  Google Scholar 

  • Schwartz H, Ollilainen V, Piironen V, Lampi AM. 2008. Tocopherol, Tocotrienol and Plant sterol contents of vegetative oils and industrial fats. J. Food Comp. Anal. 21: 152–161

    Article  CAS  Google Scholar 

  • Suja KP, Jayalekshmy, Arumughan C. 2004. Free radical scavenging behaviour of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH system. J. Agric. Food Chem. 52: 912–915

    Article  PubMed  CAS  Google Scholar 

  • Tashiro T, Fukuda Y, Osawa T, Namiki M. 1990. Oil and minor components of sesame (Sesamum indicum L.) strains. J. Am. Oil Chem. Soc. 67: 508–511

    Article  CAS  Google Scholar 

  • Tiwari S, Kumar S, Gontia I. 2011. Minireview: Biotechnological approaches for sesame (Sesamum indicum L.) and niger (Guizotia abyssinica L.f. Cass). Asia Pac. J. Mol. Biol. Biotechnol. 19: 2–9

    Google Scholar 

  • Wang S, Kanamaru K, Li W, Abe J, Yamada T, Kitamura K. 2007. Simultaneous accumulation of high contents of a-tocopherol and lutein is possible in seeds of soybean (Glycine max (L.) Merr). Breed. Sci. 52: 297–304

    Article  Google Scholar 

  • Wang L, Zhang Y, Li P, Wang X, Zhang W, Wei W, Zhang X. 2012. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. J. Am. Oil Chem. Soc. 89: 1011–1020

    Article  CAS  Google Scholar 

  • Williamson KS, Morris JB, Pye QN, Kamat CD, Hensley K. 2008. A survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECD. Phytochem. Anal. 19: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Yepuri V, Surapaneni M, Sudhakar Rao KV, Vemireddy LR, Jyothi B et al. 2013. Assessment of genetic diversity in Sesame (Sesamum indicum L.) genotypes using ESTderived SSR markers. J. Crop. Sci. Biotech. 16: 93–103

    Article  Google Scholar 

  • Yokota T, Matsuzaki Y, Koyama M, Hitomi T, Kawanaka M, et al. 2007. Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. Cancer Sci. 98: 1447–1453

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C. 2013. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 8: e63898. doi:10.1371/journal.pone.0063898

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangila Venkataraman Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Rai, A.K., Saha, S. et al. Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability. J. Crop Sci. Biotechnol. 17, 127–139 (2014). https://doi.org/10.1007/s12892-013-0112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0112-8

Key words

Navigation