Skip to main content
Log in

Analysis of Fatty Acid and Lignan Composition of Indian Germplasm of Sesame to Evaluate Their Nutritional Merits

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

An attempt was made to individually analyze a germplasm collection of 54 indigenous Indian sesame cultivars for fatty acid and lignan composition of their seed oil by gas chromatography and high performance liquid chromatography, respectively. The entries varied in their fatty acid and lignan composition. The mean percentage contents of palmitic, stearic, oleic, linoleic and α-linolenic acids ranged between 10–22, 5–10, 38–50, 18–43 and less than 1 whereas sesamol, sesamin and sesamolin scored between 3–37, 27–67, 20–59 of the total percentage of lignan, respectively. The highest percentage of α-linolenic acid (ALA) was obtained in Var-9 (1.3 % of the total fatty acids). Among the lignans, high sesamin content is considered to be significant, particularly in terms of long shelf life and nutraceutical value of sesame seed oil. The study has broadened our understanding related to differential biochemical composition of the rich sesame germplasms, thereby providing us with a useful groundwork for identifying potential targets and suitable cultivars for genetic engineering approaches to be undertaken in order to improve the nutritional quality of sesame oil, which in turn would be beneficial towards human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAOSTAT Data (2012) Food and Agriculture Organization of the United Nations. Statistical database. http://faostat.fao.org/site/291/default.aspx

  2. Ashri A (1989) Sesame. Oil crops of the world: their breeding and utilization. In: Robbelen G, Downey RK, Ashri A (eds) McGraw Hill, NY, pp 375–387

  3. Baydar H, Turgut I, Turgut K (1999) Variation of certain characters and line selection for yield, oil, oleic acid and linoleic acid in Turkish sesame (Sesamum indicum L.) population. Turkish J Agri Forestry 23:431–441

    Google Scholar 

  4. Kankaanpää P, Sutas Y, Salminen S, Isolauri E (1999) Dietary fatty acids and allergy. Ann Med 31:282–287

    Article  Google Scholar 

  5. Poudyal H, Panchal KS, Diwan V, Brown L (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50:372–387

    Article  CAS  Google Scholar 

  6. De-Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, Guidollet J, Touboul P, Delaye J (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    Article  CAS  Google Scholar 

  7. Simopoulos AP, Cleland LG (2003) Omega-6/omega-3 essential fatty acid ratio: the scientific evidence. World Rev. Nutrition and Diet, vol 92. Karger, Basel

  8. Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29:95–120

    Article  CAS  Google Scholar 

  9. Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670

    Article  CAS  Google Scholar 

  10. Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada H (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32:629–638

    CAS  Google Scholar 

  11. Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H (1996) Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122:135–136

    Article  CAS  Google Scholar 

  12. Ogawa H, Sasagawa S, Murakami T, Yoshizumi H (1995) Sesame lignans modulate cholesterol metabolism in the stroke-prone spontaneously hypertensive rat. Clin Exp Pharmacol Physiol 22:S310–S312

    Article  CAS  Google Scholar 

  13. Kiso Y (2004) Antioxidative roles of sesamin, a functional lignan in sesame seed, and its effect on lipid-and alcohol-metabolism in the liver: a DNA microarray study. BioFactors 21:191–196

    Article  CAS  Google Scholar 

  14. Akimoto K, Kitabawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H (1993) Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann Nutr Metab 37:218–224

    Article  CAS  Google Scholar 

  15. Kiso Y, Tsuruoka N, Kidokoro A, Matsumoto I, Abe K (2005) Sesamin ingestion regulates the transcription levels of hepatic metabolizing enzymes for alcohol and lipids in rats. Alcohol Clin Exp Res 29:116S–120S

    Article  CAS  Google Scholar 

  16. Matsumura Y, Kita S, Morimoto S, Akimoto K, Furuya M, Oka N, Tanaka T (1995) Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18:1016–1019

    Article  CAS  Google Scholar 

  17. Kita S, Matsumura Y, Morimoto S, Akimoto K, Furuya M, Oka N, Tanaka T (1995) Antihypertensive effect of sesamin. II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18:1283–1285

    Article  CAS  Google Scholar 

  18. Matsumura Y, Kita S, Tanida Y, Taguchi Y, Morimoto S, Akimoto K, Tanaka T (1998) Antihypertensive effect of sesamin. III. Protection against development and maintenance of hypertension in stroke-prone spontaneously hypertensive rats. Biol Pharm Bull 21:469–473

    Article  CAS  Google Scholar 

  19. Nakano D, Itoh C, Takaoka M, Kiso Y, Tanaka T, Matsumura Y (2002) Antihypertensive effect of sesamin. IV. Inhibition of vascular superoxide production by sesamin. Biol Pharm Bull 25:1247–1249

    Article  CAS  Google Scholar 

  20. Nakano D, Takaoka M, Kiso Y, Matsumura Y (2004) Antihypertensive effect of sesamin. Vasc Dis Prev 1:233–241

    Article  CAS  Google Scholar 

  21. Lin C-H, Shen M-L, Zhou N, Lee C-C, Kao S-T, Wu DC (2014) Protective Effects of the Polyphenol Sesamin on Allergen-Induced TH2 Responses and Airway Inflammation in Mice. PLoS ONE 9:e96091. doi:10.1371/journal.pone.0096091

    Article  Google Scholar 

  22. Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M, Yamada H (1991) Sesamin is a potent and specific inhibitor of delta 5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids 26:512–516

    Article  CAS  Google Scholar 

  23. Miyahara Y, Komiya T, Katsuzaki H, Imai K, Nakagawa M, Ishii Y, Hibasami H (2000) Sesamin and episesamin induce apoptosis in human lymphoid leukemia. Int J Mol Med 6:43–46

    CAS  Google Scholar 

  24. Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136:906–912

    CAS  Google Scholar 

  25. Moritani T, Hamada T, Kimura T, Hayashi T, Kiso Y (2003) Changes in cardiac autonomic activities and antioxidant effects of sesamin during smoking. Med Sci Sports Exerc 35:S269

    Article  Google Scholar 

  26. Hemalatha S, Ghafoorunissa (2004) Lignans and tocopherols in Indian sesame cultivars. J Am Oil Chem Soc 81:467–470

    Article  CAS  Google Scholar 

  27. Mondal N, Bhat VK, Srivastava SP (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269

    Article  CAS  Google Scholar 

  28. Beroza M, Kinman ML (1955) Sesamin, sesamolin, and sesamol content of the oil of sesame seed as affected by strain, location grown, ageing and frost damage. J Am Oil Chem Soc 32:348–350

    Article  CAS  Google Scholar 

  29. Uzun B, Arslan C, Furat S (2008) Variation in fatty acid compositions, oil content and oil yield in germplasm collection of sesame (Sesamum indicum L.). J Am Oil Chem Soc 85:1135–1142

    Article  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 235:8–17

    Google Scholar 

  31. Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  CAS  Google Scholar 

  32. Rangkadilok N, Pholphana N, Mahidol C, Wongyai W, Saengsooksree K, Nookabkaew S, Satayavivad J (2010) Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chem 122:724–730

    Article  CAS  Google Scholar 

  33. Pleines S, Friedt W (1988) Breeding for improved C18-fatty acid composition in rapeseed (Brassica napus L.). Fat Sci Technol 90:167–171

    CAS  Google Scholar 

  34. Velasco L, Goffman FD, Becker HC (1998) Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 45:371–382

    Article  Google Scholar 

  35. Bajpai S, Prajapati S, Luthra R, Sharma S, Naqvi A, Kumar S (1999) Variation in the seed and oil yields and oil quality in the Indian germplasm of opium poppy Papaver somniferum. Genet Resour Crop Evol 46:435–439

    Article  Google Scholar 

  36. Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14:401

    Google Scholar 

  37. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

    Article  Google Scholar 

  38. Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochem Biophys Acta 1082:1–26

    Article  CAS  Google Scholar 

  39. Chung CH, Kim JK, Lee CY, Choi LY (1999) Cloning and characterization of a seed-specific ω-3 fatty acid desaturase cDNA from Perilla frutescens. Plant Cell Physiol 40:114–118

    Article  CAS  Google Scholar 

  40. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  Google Scholar 

  41. Hamada T, Kodama H, Nishimura M, Iba K (1996) Modification of fatty acid composition by over- and antisense-expressions of a microsomal ω-3 fatty acid desaturase gene in transgenic tobacco. Transgenic Res 5:115–121

    Article  CAS  Google Scholar 

  42. Vrinten P, Hu ZHY, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 39:79–87

    Article  Google Scholar 

  43. Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287

    Article  CAS  Google Scholar 

  44. Taskin K, Ercan A, Turgut K (1999) Agrobacterium tumefaciens-mediated transformation of sesame (Sesamum indicum L.). Tr J Bot 23:291–295

    Google Scholar 

  45. Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell, Tissue Organ Cult 103:377–386

    Article  CAS  Google Scholar 

  46. Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium- mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190

    Article  CAS  Google Scholar 

  47. Bhunia RK, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti MK, Sen SK (2014) Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86:351–365

    Article  CAS  Google Scholar 

  48. Moazzami AA, Eldin (2006) Sesame seed lignans: Diversity, human metabolism and bioactivities. Doctoral thesis, Swedish University of Agricultural Sciences. Uppsala. ISBN: 91-576-7147-8

  49. Yoshida H, Takagi S (1997) Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. J Sci Food Agric 75:19–26

    Article  CAS  Google Scholar 

  50. Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462

    Article  CAS  Google Scholar 

  51. Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1992) World oilseeds: chemistry, technology, and utilization. Van Nostrand Reinhold Company, New York ISBN 13: 9780442001124

    Google Scholar 

  52. Were BA, Onkware AO, Gudu S, Welander M, Carlsson AS (2006) Seed oil content and fatty acid composition in east African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops Res 97:254–260

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their thanks to Manoj Aditya and Varun Manna for their technical assistance during the course of this study and Meghnath Prasad for secretarial assistance in preparing this report. Financial assistance from National Agricultural Innovation Project, Indian Council of Agricultural Research (NAIP/ICAR) in terms of grant support (Project component code 4C1090) to laboratory and fellowship to RKB is thankfully acknowledged. Finally, the authors extend their thanks to the editor and the anonymous reviewers for their useful suggestions which have helped to improve the clarity of the manuscript immensely.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Kumar Sen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, R.K., Chakraborty, A., Kaur, R. et al. Analysis of Fatty Acid and Lignan Composition of Indian Germplasm of Sesame to Evaluate Their Nutritional Merits. J Am Oil Chem Soc 92, 65–76 (2015). https://doi.org/10.1007/s11746-014-2566-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2566-3

Keywords

Navigation