Skip to main content
Log in

Degradation of Norfloxacin by Electrochemical Oxidation Using Ti/Sno2-Sb Electrode Doped with Ni or Mo

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract 

Electrochemical oxidation of NOR (norfloxacin) was first investigated on Ti/SnO2-Sb, Ti/SnO2-Sb-Ni, and Ti/SnO2-Sb-Mo electrodes prepared by sol-gel method. The influence of transition metal doping on the electrode performance was characterized by SEM (scanning electron microscopy), EDS (energy-dispersive spectrometer), XRD (X-ray diffraction), and LSV (linear voltammetric curve). The doping of metal elements can change the surface morphology of the electrodes and the grain size of the active layer, which affect the electrocatalytic activity of the electrode. Among these three prepared electrodes, the Ti/SnO2-Sb-Ni electrode has the highest oxygen evolution potential and the best removal effect on NOR. The effects of current density, the pH value, and the initial concentration of NOR on the removal of NOR by electrochemical oxidation with Ti/SnO2-Sb-Ni electrode were investigated. For Ti/SnO2-Sb-Ni electrode, the removal rate of NOR was 100% after 30 min and the removal rate of TOC was 75% after 120 min under the conditions of the current density of 20 mA cm−2, pH of 3, initial concentration of NOR of 100 mg L−1, and concentration of Na2SO4 of 0.25 mol L−1. The kinetic investigation showed that the oxidation of NOR on these three electrodes displayed pseudo-first-order kinetic behavior. For NOR degradation, the electrocatalytic performance of p-type metal-doped Ti/SnO2-Sb electrode (Ti/SnO2-Sb-Ni) is better than that of n-type metal-doped Ti/SnO2-sb electrode (Ti/SnO2-Sb-Mo).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.Y. Huang, Z.Y. An, M.J. Moran, F. Liu, J. Hazard. Mater. 399, 122813 (2020). https://doi.org/10.1016/j.jhazmat.2020.122813

  2. S.C. Su, C.Y. Li, J.P. Yang, Nt. J. Env. Res. Pub. He. 17(2), 552 (2020). https://doi.org/10.3390/ijerph17020552

    Article  CAS  Google Scholar 

  3. S. Kim, D.S. Aga, J. Toxicol. Env. Heal. B. 10(8), 559–573 (2007). https://doi.org/10.1080/15287390600975137

    Article  CAS  Google Scholar 

  4. J.X. Cheng, L. Jiang, T.Q. Sun, Y. Tang, Z.X. Du, L.J. Lee, Q.Y. Zhao, Arch. Environ. Contam. Toxicol. 77(1), 88–97 (2019). https://doi.org/10.1007/s00244-019-00605-0

    Article  CAS  PubMed  Google Scholar 

  5. S. He, D.M. Dong, X. Zhang, C. Sun, C.Q. Wang, X.Y. Hua, L.W. Zhang, Z.Y. Guo, ESPR. 25(24), 24003–24012 (2018). https://doi.org/10.1007/s11356-018-2459-3

    Article  CAS  PubMed  Google Scholar 

  6. M.D. Machado, E.V. Soares, Aquat. Toxicol. 208, 179–186 (2019). https://doi.org/10.1016/j.aquatox.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  7. Y. Pan, J.Y. Dong, L.L. Wan, S.C. Sun, H.J. MacIsaac, K.G. Drouillard, X.X. Chang, J. Hazard. Mater. 385, 121625 (2020). https://doi.org/10.1016/j.jhazmat.2019.121625

    Article  CAS  PubMed  Google Scholar 

  8. S.L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, V. Muthuraj, J. Ind. Eng. Chem. 80, 558–567 (2019). https://doi.org/10.1016/j.jiec.2019.08.035

    Article  CAS  Google Scholar 

  9. A.M. Wang, Y.Y. Zhang, S.S. Han, C.X. Guo, Z.J. Wen, X.J. Tian, J.Y. Li, Chemosphere. 270, 129486 (2021). https://doi.org/10.1016/j.chemosphere.2020.129486

    Article  CAS  PubMed  Google Scholar 

  10. H.Y. Zhan, Y.T. Wang, X.Y. Mi, Z.R. Zhou, P.F. Wang, Q.X. Zhou, Chin. Chem. Lett. 31(10), 2843–2848 (2020). https://doi.org/10.1016/j.cclet.2020.08.015

    Article  CAS  Google Scholar 

  11. T.T. Lu, X.X. Xu, X.X. Liu, T. Sun, Chem. Eng. J. 308, 151–159 (2017). https://doi.org/10.1016/j.cej.2016.09.009

    Article  CAS  Google Scholar 

  12. J.Y. Cao, J.J. Li, W. Chu, W.L. Cen, Chem. Eng. J. 400, 125813 (2020). https://doi.org/10.1016/j.cej.2020.125813

    Article  CAS  Google Scholar 

  13. F.Q. Wei, D.X. Liao, Y. Lin, C. Hu, J.Q. Ju, Y.S. Chen, D.L. Feng, Sep. Purif. Technol. 258(2), 118056 (2021). https://doi.org/10.1016/j.seppur.2020.118056

  14. S. Dash, N. Munichandraiah, Electrochim. Acta. 80, 68–76 (2012). https://doi.org/10.1016/j.electacta.2012.06.130

    Article  CAS  Google Scholar 

  15. J.A. Vigil, T.N. Lambert, K. Eldred, A.C.S. Appl, Mater. Interfaces 7(41), 22745–22750 (2015). https://doi.org/10.1021/acsami.5b07684

    Article  CAS  Google Scholar 

  16. T. González, J.R. Domínguez, P. Palo, J. Sánchez-Martín, E.M. Cuerda-Correa, Desalination 280(1–3), 197–202 (2011). https://doi.org/10.1016/j.desal.2011.07.012

    Article  CAS  Google Scholar 

  17. M. Matsushita, H. Kuramitz, S. Tanaka, EST 39(10), 3805–3810 (2005). https://doi.org/10.1021/es040379f

  18. H.J. Luo, C.L. Li, X. Sun, S.J. Chen, B.B. Ding, L. Yang, J. Electroanal. Chem. 799, 393–398 (2017). https://doi.org/10.1016/j.jelechem.2017.06.037

    Article  CAS  Google Scholar 

  19. J.J. Wang, R.B. Bai, Water Res. 101, 103–113 (2016). https://doi.org/10.1016/j.watres.2016.04.044

    Article  CAS  PubMed  Google Scholar 

  20. Y.F. Zhang, I. Angelidaki, Water. Res. 56, 11–25 (2014). https://doi.org/10.1016/j.watres.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  21. N. Chen, G.D. Fang, G.X. Liu, D.M. Zhou, J. Gao, C. Gu, J. Hazard. Mater. 357, 483–490 (2018). https://doi.org/10.1016/j.jhazmat.2018.06.030

    Article  CAS  PubMed  Google Scholar 

  22. M.K. Sahoo, L. Sayoo, D.B. Naik, R.N. Sharan, Sep. Purif. Technol. 106, 110–116 (2013). https://doi.org/10.1016/j.seppur.2013.01.004

    Article  CAS  Google Scholar 

  23. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170(2–3), 520–529 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039

  24. H.G. Mobtaker, S.J. Ahmadi, S.M. Dehaghi, Yousefi Taher. Rare Met. 34(12), 851–858 (2015). https://doi.org/10.1007/s12598-015-0455-z

    Article  CAS  Google Scholar 

  25. Y. Wang, C.C. Shen, M.M. Zhang, B.T. Zhang, Y.G. Yu, Chem. Eng. J. 296, 79–89 (2016). https://doi.org/10.1016/j.cej.2016.03.093

    Article  CAS  Google Scholar 

  26. D. Zhi, J.L. Qin, H. Zhou, J.B. Wang, S.X. Yang, J. Appl. Electrochem. 47, 1313–1322 (2017). https://doi.org/10.1007/s10800-017-1125-7

    Article  CAS  Google Scholar 

  27. M.G. Fernandez-Aguirre, R. Berenguer, S. Beaumont, M. Nuez, A.L. Rosa-Toro, J.M. Peralta-Hernandez , E. Morallon ,Electrochimica Acta, 354(10)136686. (2020). https://doi.org/10.1016/j.electacta.2020.136686

  28. Z.R. Sun, H. Zhang, X.F. Wei, R. Du, X. Hu, J. Electrochem. Soc. 162(9), H590–H596 (2015). https://doi.org/10.1149/2.0221509jes

    Article  CAS  Google Scholar 

  29. J.Y. Liang, C. Geng, D. Li, L. Cui, X. Wang, J. Mater. Sci. Technol. 31(5), 473–478 (2015). https://doi.org/10.1016/j.jmst.2014.11.025

    Article  CAS  Google Scholar 

  30. Y.H.Cui, Y.J. Feng, Z.Q. Liu, Electrochimical Acta. 54(21), 4903–4909 (2009). https://doi.org/10.1016/j.electacta.2009.04.041

  31. S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Appl. Catal. B-Environ. 97(1–2), 135–141 (2010). https://doi.org/10.1016/j.apcatb.2010.03.033

    Article  CAS  Google Scholar 

  32. P.D. Yao, Desalination. 267(2–3), 170–174 (2011). https://doi.org/10.1016/j.desal.2010.09.021

    Article  CAS  Google Scholar 

  33. Y.J. Feng, Y.H. Cui, J.F. Liu, B.E. Logan, J. Hazard. Mater. 178(1–3), 29–34 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.101

  34. Y.H. Wang, G. Li, Q.Y. Chen, X. Geng, W. Yan, J. Solid State Electr. 17(7), 1985–1989 (2013). https://doi.org/10.1007/s10008-013-2054-y

    Article  CAS  Google Scholar 

  35. Z.S. Li, B.L. Li, C.X. Yang, S. Lin, Q. Pang, P. Shen, Appl. Surf. Sci. 491, 723–734 (2019). https://doi.org/10.1016/j.apsusc.2019.06.183

    Article  CAS  Google Scholar 

  36. H.Q. Xu, A.P. Li, Q. Qi, W. Jiang, Y.M. Sun, Korean J. Chem. Eng. 29(9), 1178–1186 (2012). https://doi.org/10.1007/s11814-012-0014-3

    Article  CAS  Google Scholar 

  37. E. Guinea, J.A. Garrido, R.M. Rodríguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Electrochim. Acta. 55(6), 2101–2115 (2010). https://doi.org/10.1016/j.electacta.2009.11.040

    Article  CAS  Google Scholar 

  38. V.S. Antonin, M.C. Santos, S. Garcia-Segura, E. Brillas, Water Res. 83, 31–41 (2015). https://doi.org/10.1016/j.watres.2015.05.066

    Article  CAS  PubMed  Google Scholar 

  39. X.A. Xiao, X. Zeng, A.T. Lemley, J. Agric. Food Chem. 58(18), 10169–10175 (2010). https://doi.org/10.1021/jf101943c

    Article  CAS  PubMed  Google Scholar 

  40. M. Panizza, G. Cerisola, Chem. Rev. 109(12), 6541–6569 (2009). https://doi.org/10.1021/cr9001319

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project is sponsored by “Liaoning BaiQianWan Talents Program” and Key R&D project of Liaoning Province of China(No. 2020JH2/10300079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jiang or Jiyan Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Li, D., Zhang, L. et al. Degradation of Norfloxacin by Electrochemical Oxidation Using Ti/Sno2-Sb Electrode Doped with Ni or Mo. Electrocatalysis 12, 436–446 (2021). https://doi.org/10.1007/s12678-021-00663-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00663-w

Keywords

Navigation