Skip to main content
Log in

Electrochemical removal of a pharmaceutical pollutant from aqueous solution using Ti/nano ZnO-Bi2O3 modified electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research investigates the utilization of a modified Ti/nano ZnO-Bi2O3 electrode for the electrochemical advanced oxidation-based removal of a pharmaceutical pollutant from an aqueous solution. To analyze the surface properties of Ti/nano ZnO, Ti/nano Bi2O3, and Ti/nano ZnO-Bi2O3 electrodes made using electrophoretic deposition, various analytical methods were used. These methods included X-ray diffraction analysis, energy-dispersive spectroscopy, and field emission scanning electron microscopy confirmed the presence of ZnO nanoparticles and Bi2O3 nanoparticles in a layer that is uniformly coated on the Ti/nano ZnO-Bi2O3 electrode. Beside linear sweep voltammetry and Tafel plots confirmed the increased stability and electrocatalytic activity of the modified electrode compared to the initial electrode. Chronopotentiometry and chronoamperometry verified the stability and better conductivity of the nanocomposite electrode, and according to electrochemical impedance spectroscopy, charge transfer in the modified electrode has improved by 87%. We evaluated the effectiveness of the Ciprofloxacin removal process by considering factors, such as pH in the range of 3–11, electrolyte concentration in the range of 1–7 g L−1, and current density in the range of 1.2–5.75 mA cm−2. We selected Ciprofloxacin as the specific pollutant for evaluating pollutant removal from aqueous solutions due to its widespread use and presence in the environment. We determined the optimal parameter values to be 6.25 mA cm−2, 5, and 3 g L−1. Under these optimal conditions, the efficiency of ciprofloxacin removal reached 96.33% within 300 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

BDD:

Boron-doped diamond

Bi2O3 :

Bismuth trioxide

CIP:

Ciprofloxacin

CPE:

Constant phase element

DMF:

N, N-Dimethylformamide

DSA:

Dimensionally stable anode

EDS:

Energy-dispersive spectroscopy

EIS:

Electrochemical impedance spectroscopy

EAOPs:

Electrochemical advanced oxidation processes

FESEM:

Scanning electron microscopy

LSV:

Linear sweep voltammetry

MMO:

Mixed metal oxide

OER:

Oxygen evolution reaction

OH°:

Hydroxyl radicals

OFAT:

One-factor-at-a-time

pDNB:

Para-Dinitrobenzene

Rct:

Charge transfer resistance

Rs:

Solution resistance

Ti:

Titanium

XRD:

X-ray diffraction

ZnO:

Zinc oxide

References

  1. Moreira FC, Boaventura RAR, Brillas E et al (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B 202:217–261. https://doi.org/10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  2. Zhang J, Zhou Y, Yao B et al (2021) Current progress in electrochemical anodic-oxidation of pharmaceuticals: mechanisms, influencing factors, and new technique. J Hazard Mater 418:126313. https://doi.org/10.1016/j.jhazmat.2021.126313

    Article  CAS  PubMed  Google Scholar 

  3. Clematis D, Delucchi M, Panizza M (2023) Electrochemical technologies for wastewater treatment at pilot plant scale. Curr Opin Electrochem 37:101172. https://doi.org/10.1016/j.coelec.2022.101172

    Article  CAS  Google Scholar 

  4. Anglada Á, Urtiaga AM, Ortiz I (2010) Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate. J Hazard Mater 181:729–735. https://doi.org/10.1016/j.jhazmat.2010.05.073

    Article  CAS  PubMed  Google Scholar 

  5. Moradi M, Vasseghian Y, Khataee A et al (2020) Service life and stability of electrodes applied in electrochemical advanced oxidation processes: a comprehensive review. J Ind Eng Chem 87:18–39. https://doi.org/10.1016/j.jiec.2020.03.038

    Article  CAS  Google Scholar 

  6. Man S, Zeng X, Yin Z et al (2022) Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim Acta 411:140066. https://doi.org/10.1016/j.electacta.2022.140066

    Article  CAS  Google Scholar 

  7. Fu R, Zhang P-S, Jiang Y-X et al (2023) Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: advance in mechanism, direct and indirect oxidation detection methods. Chemosphere 311:136993. https://doi.org/10.1016/j.chemosphere.2022.136993

    Article  CAS  PubMed  Google Scholar 

  8. Jiang H, Chen H, Wei K et al (2023) Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. Chemosphere 341:140083. https://doi.org/10.1016/j.chemosphere.2023.140083

    Article  CAS  PubMed  Google Scholar 

  9. Wei Z, Kang X, Xu S et al (2021) Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: preparation, characterization, optimization, application. Chin J Chem Eng 32:191–202. https://doi.org/10.1016/j.cjche.2020.09.044

    Article  CAS  Google Scholar 

  10. Sun Y, Cheng S, Li L et al (2020) Facile sealing treatment with stannous citrate complex to enhance performance of electrodeposited Ti/SnO2-Sb electrode. Chemosphere 255:126973. https://doi.org/10.1016/j.chemosphere.2020.126973

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, He P, Zhou P et al (2021) Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO2 anode for electrocatalytic degradation of acetaminophen. Chemosphere 271:129830. https://doi.org/10.1016/j.chemosphere.2021.129830

    Article  CAS  PubMed  Google Scholar 

  12. Espinoza LC, Sepúlveda P, García A et al (2020) Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO2 and IrO2 nanoparticles. Chemosphere 251:126674. https://doi.org/10.1016/j.chemosphere.2020.126674

    Article  CAS  PubMed  Google Scholar 

  13. Medina JC, Portillo-Vélez NS, Bizarro M et al (2018) Synergistic effect of supported ZnO/Bi2O3 heterojunctions for photocatalysis under visible light. Dyes Pigm 153:106–116. https://doi.org/10.1016/j.dyepig.2018.02.006

    Article  CAS  Google Scholar 

  14. Cao F, Tan J, Zhang S et al (2021) Preparation and recent developments of Ti/SnO2-Sb electrodes. J Chem 2021:1–13. https://doi.org/10.1155/2021/2107939

    Article  CAS  Google Scholar 

  15. Ansari S, Ansari MS, Satsangee SP, Jain R (2021) Bi2O3/ZnO nanocomposite: synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J Pharm Anal 11(1):57–67

    Article  PubMed  Google Scholar 

  16. Al-Buriahi AK, Al-shaibani MM, Mohamed RMSR et al (2022) Ciprofloxacin removal from non-clinical environment: a critical review of current methods and future trend prospects. J Water Process Eng 47:102725. https://doi.org/10.1016/j.jwpe.2022.102725

    Article  Google Scholar 

  17. Kamal N, Saha AK, Singh E et al (2024) Biodegradation of ciprofloxacin using machine learning tools: kinetics and modelling. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2024.134076

    Article  PubMed  Google Scholar 

  18. Dumitriu C, Constantinescu A, Dumitru A et al (2022) Modified electrode with ZnO nanostructures obtained from silk fibroin for amoxicillin detection. Crystals. https://doi.org/10.3390/cryst12111511

    Article  Google Scholar 

  19. Liu B, Wang S, Wang C et al (2019) Surface morphology and electrochemical properties of RuO2-doped Ti/IrO2-ZrO2 anodes for oxygen evolution reaction. J Alloy Compd 778:593–602. https://doi.org/10.1016/j.jallcom.2018.11.191

    Article  CAS  Google Scholar 

  20. Akbari N, Nabizadeh Chianeh F, Arab A (2021) Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization. J Appl Electrochem 52:189–202. https://doi.org/10.1007/s10800-021-01634-1

    Article  CAS  Google Scholar 

  21. Xue J, Ma S, Bi Q et al (2019) Comparative study on the effects of different structural Ti substrates on the properties of SnO2 electrodes. J Alloy Compd 2019(773):1040–1047. https://doi.org/10.1016/j.jallcom.2018.09.227

    Article  CAS  Google Scholar 

  22. Duan X, Liu W, Zhao X, Chang L (2017) Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochim Acta 240:424–436

    Article  CAS  Google Scholar 

  23. Zhang L, Xu L, He J et al (2014) Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201. https://doi.org/10.1016/j.electacta.2013.11.117

    Article  CAS  Google Scholar 

  24. Esmaelian M, Nabizadeh Chianeh F, Asghari A (2019) Degradation of ciprofloxacin using electrochemical oxidation by Ti/nanoSnO2-MWCNT electrode: optimization and modelling through central composite design. J Ind Eng Chem 78:97–105. https://doi.org/10.1016/j.jiec.2019.06.032

    Article  CAS  Google Scholar 

  25. Petrović MM, Slipper IJ, Antonijević MD et al (2015) Characterization of a Bi2O3 coat based anode prepared by galvanostatic electrodeposition and its use for the electrochemical degradation of reactive orange 4. J Taiwan Inst Chem Eng 50:282–287. https://doi.org/10.1016/j.jtice.2014.12.010

    Article  CAS  Google Scholar 

  26. Wang Q, Tu S, Wang W et al (2021) Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.127244

    Article  Google Scholar 

  27. Xu X, Zhao J, Liua Z, Baia X, Yang Y, Lia X, Wanga Y, Liu W, Zhua Y (2021) Improvement of stability and reduction of energy consumption for Ti-based MnOx electrode by Ce and carbon black co-incorporating in electrochemical degradation of ammonia nitrogen. Water Sci Technol. https://doi.org/10.2166/wst.2021.421

    Article  PubMed  Google Scholar 

  28. Chakraborty M, Bera KK, Chowdhury SR, Ray A, Das S, Bhattacharya SK (2019) Significantly improved and synergistic effect of PteZnOeBi2O3 ternary hetero-junctions toward anode-catalytic oxidation of methanol in alkali. Electrochim Acta. https://doi.org/10.1016/j.electacta.2019.134775

    Article  Google Scholar 

  29. Liu Y, Liu H, Ma J et al (2012) Preparation and electrochemical properties of Ce-Ru-SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols. J Hazard Mater 213–214:222–229. https://doi.org/10.1016/j.jhazmat.2012.01.090

    Article  CAS  PubMed  Google Scholar 

  30. Hendaoui K, Ayari F, Rayana IB et al (2018) Real indigo dyeing effluent decontamination using continuous electrocoagulation cell: study and optimization using response surface methodology. Process Saf Environ Prot 116:578–589. https://doi.org/10.1016/j.psep.2018.03.007

    Article  CAS  Google Scholar 

  31. Hendaoui K, Trabelsi-Ayadi M, Ayari F (2022) Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent. Chin J Chem Eng 44:310–320. https://doi.org/10.1016/j.cjche.2020.10.047

    Article  CAS  Google Scholar 

  32. Lin H, Niu J, Xu J et al (2013) Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution. Electrochim Acta 97:167–174. https://doi.org/10.1016/j.electacta.2013.03.019

    Article  CAS  Google Scholar 

  33. Bian X, Xia Y, Zhan T et al (2019) Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere 233:762–770. https://doi.org/10.1016/j.chemosphere.2019.05.226

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Li M, Li D, Wen Q, Chen Z (2020) Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode: preparation of anode, efficiency and mechanism. Chemosphere 248:126021

    Article  CAS  PubMed  Google Scholar 

  35. Chianeh FN, Ghasemi S (2021) Simultaneous degradation of some pharmaceuticals by Ti/nano SnO2-α-Fe2O3 anode in different supporting electrolytes. SSRN Electron J. https://doi.org/10.2139/ssrn.4061786

    Article  Google Scholar 

  36. Hendaoui K, Trabelsi-Ayadi M, Ayari F (2021) Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation. Chin J Chem Eng 29:242–252. https://doi.org/10.1016/j.cjche.2020.07.065

    Article  CAS  Google Scholar 

  37. Abdollahpour Mollahajlou F, Nabizadeh Chianeh F (2023) Study of novel Ti/nanoTiO2-CuO electrode preparation for electrocatalytic degradation of drug pollutant from aqueous solution. Phys Chem Earth Parts A/B/C 2023(130):103357. https://doi.org/10.1016/j.pce.2023.103357

    Article  Google Scholar 

  38. Cui L, Yang Y, Li M, Yao Y (2019) Electrochemical removal of metribuzin in aqueous solution by a novel PbO2/WO3 composite anode: characterization, influencing parameters and degradation pathways. Taiwan Inst Chem Eng 20:55. https://doi.org/10.1016/j.jtice.2019.05.023

    Article  CAS  Google Scholar 

  39. Ansari DNA (2020) Convergent paired electrocatalytic degradation of pdinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism. Appl Catal 261:118226

    Article  CAS  Google Scholar 

  40. Rabaaoui N, Saad Mel K, Moussaoui Y et al (2013) Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation. J Hazard Mater 250–251:447–453. https://doi.org/10.1016/j.jhazmat.2013.02.027

    Article  CAS  PubMed  Google Scholar 

  41. Sayed M, Ismail M, Khan S et al (2016) Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol 37:590–602. https://doi.org/10.1080/09593330.2015.1075597

    Article  CAS  PubMed  Google Scholar 

  42. Zhu J, Wang H, Duan A et al (2023) Mechanistic insight into the degradation of ciprofloxacin in water by hydroxyl radicals. J Hazard Mater 446:130676. https://doi.org/10.1016/j.jhazmat.2022.130676

    Article  CAS  PubMed  Google Scholar 

  43. Damodhar G, Prabir G (2019) Removal of organic compounds found in the wastewater through electrochemical advanced oxidation processes: a review. Russ J Electrochem 55:591–620. https://doi.org/10.1134/s1023193519050057

    Article  CAS  Google Scholar 

  44. Yuan Q, Qu S, Li R et al (2023) Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): performance, mechanisms, and perspectives. Sci Total Environ 856:159092. https://doi.org/10.1016/j.scitotenv.2022.159092

    Article  CAS  PubMed  Google Scholar 

  45. Bera KK et al (2021) Anodic oxidation of sodium formate and methanol on Pd and Pt electrodes in alkali: a comparative study. Mater Sci Eng 1080:012013

    CAS  Google Scholar 

  46. Bera K, Chakraborty M, Bhattacharya S (2021) Anodic oxidation of sodium formate and methanol on Pd and Pt electrodes in alkali: a comparative study. IOP Conf Ser 1080:012013. https://doi.org/10.1088/1757-899X/1080/1/012013

    Article  CAS  Google Scholar 

  47. Jiang Y, Zhao H, Liang J et al (2021) Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms. A mini review. Electrochem Commun. https://doi.org/10.1016/j.elecom.2020.106912

    Article  Google Scholar 

  48. Rodríguez-Narváez OM, Picos AR, Bravo-Yumi N et al (2021) Electrochemical oxidation technology to treat textile wastewaters. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2021.100806

    Article  Google Scholar 

  49. Feng J, Lan S, Yao C et al (2017) Electro-generation of NaOH–H2SO4 and simultaneous degradation of acid orange 7 from Na2SO4-containing wastewater by Ti/IrO2 electrodes. J Chem Technol Biotechnol 92:827–833. https://doi.org/10.1002/jctb.5066

    Article  CAS  Google Scholar 

  50. Feier B, Florea A, Cristea C et al (2018) Electrochemical detection and removal of pharmaceuticals in waste waters. Curr Opin Electrochem 11:1–11. https://doi.org/10.1016/j.coelec.2018.06.012

    Article  CAS  Google Scholar 

  51. Muthuchamy M, Periyasamy S (2018) Electrochemical oxidation of paracetamol in water by graphite anode: effect of pH, electrolyte concentration and current density. Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.08.036

    Article  Google Scholar 

  52. Brito LR, Ganiyu SO, dos Santos EV, Oturan MA, Martínez-Huitle CA (2021) Martínez-huitle removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: role of electrode materials, electrolytes and real water matrices. Electrochim Acta. https://doi.org/10.1016/j.electacta.2021.139254

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Semnan University of Seman, Iran for financial and other supports.

Author information

Authors and Affiliations

Authors

Contributions

FNC: supervision; validation; formal analysis; and writing—review and editing SR: investigation; methodology; and data curation; writing—original draft.

Corresponding author

Correspondence to Farideh Nabizadeh Chianeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, S., Nabizadeh Chianeh, F. Electrochemical removal of a pharmaceutical pollutant from aqueous solution using Ti/nano ZnO-Bi2O3 modified electrode. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02128-6

Keywords

Navigation